专题04 三角形中的倒角模型-高分线模型、双(三)垂直模型(原卷版)该模型主要涉及高线、角平分线及角度的计算(内角和 定理、外角定理等)。熟悉这些模型可以快速得到角的关系,求出所需的角。本专题高分线模型、双垂直 模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。 模型1:高分线模型 条件:D 是高,E 是角平分线 结论:∠DE= 例1.(2023 秋·浙江·八年级专题练习)如图,在 中, ,20 极点 | 14 页 | 964.17 KB | 4 月前3
专题30 最值模型之瓜豆模型(原理)圆弧轨迹型(原卷版)压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。掌握该压轴题型 的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。本专题就最值模型中的瓜豆原 理(动点轨迹为圆弧型)进行梳理及对应试题分析,方便掌握。 【模型解读】 模型1、运动轨迹为圆弧 模型1-1 如图,P 是圆上一个动点,为定点,连接P,Q 为P 中点.Q 点轨迹是? 如图,连接,取中点M,任意20 极点 | 13 页 | 1.52 MB | 4 月前3
专题33 最值模型之胡不归模型解读与提分精练(全国通用)(原卷版)最值模型之胡不归模型 胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟 考中常以压轴题的形式考查,学生不易把握。本专题就最值模型中的胡不归问题进行梳理及对应试题分析, 方便掌握。在解决胡不归问题主要依据是:点到线的距离垂线段最短。 ...........................................................20 极点 | 14 页 | 823.72 KB | 4 月前3
专题34 最值模型之阿氏圆模型解读与提分精练(全国通用)(原卷版)最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化 归等的数学思想。在各类考试中都以高档题为主,中考说明中曾多处涉及。本专题就最值模型中的阿氏圆 问题进行梳理及对应试题分析,方便掌握。 ........................................................................................20 极点 | 15 页 | 1.11 MB | 4 月前3
专题37 最值模型之瓜豆模型(原理)直线解读与提分精练(全国通用)(原卷版)压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。掌握该压轴题型 的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。本专题就最值模型中的瓜豆原 理(动点轨迹为直线型)进行梳理及对应试题分析,方便掌握。 .......................................................................................20 极点 | 11 页 | 988.21 KB | 4 月前3
专题04 三角形中的倒角模型之高分线模型、双(三)垂直模型解读与提分精练(全国通用)(原卷版)近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和 定理、外角定理等)。熟悉这些模型可以快速得到角的关系,求出所需的角。本专题高分线模型、双垂直 模型进行梳理及对应试题分析,方便掌握。 大家在掌握几何模型时,多数同学会注重模型结论,而忽视几何模型的证明思路及方法,导致本末倒 置。要知道数学题目的考察不是一成不变的,学数学更不能死记硬背,要在理解的基础之上再记忆,这样20 极点 | 16 页 | 1.20 MB | 4 月前3
专题27 最值模型之胡不归模型(原卷版)最值模型之胡不归模型 胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟 考中常以压轴题的形式考查,学生不易把握。本专题就最值模型中的胡不归问题进行梳理及对应试题分 析,方便掌握。在解决胡不归问题主要依据是:点到线的距离垂线段最短。 【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之 间线段最短”,虽然从他此刻位置到家B20 极点 | 13 页 | 1.33 MB | 4 月前3
专题29 最值模型之瓜豆模型(原理)直线轨迹型(原卷版)压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。掌握该压轴题型 的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。本专题就最值模型中的瓜豆原 理(动点轨迹为直线型)进行梳理及对应试题分析,方便掌握。 【模型解读】 瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。 动点轨迹基本类型为直线型和圆弧型,本专题受学进程影响,估只对瓜豆原理中的直线型轨迹作讲解。20 极点 | 12 页 | 1.42 MB | 4 月前3
专题32 最值模型之将军遛马模型与将军过桥(造桥)模型解读与提分精练(全国通用)(原卷版)将军遛马模型和将军过桥(造桥)模型是将军饮马的姊妹篇,它是在将军饮马的基础上加入了平移的 思想,主要还是考查转化与化归等的数学思想。在各类考试中都以中高档题为主,本专题就将军遛马模型 和将军过桥(造桥)模型进行梳理及对应试题分析,方便掌握。 在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长 度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连20 极点 | 12 页 | 940.86 KB | 4 月前3
专题32 圆中的重要模型之隐圆模型(原卷版)长、定弦对直角、定弦对定角、四点共圆等,上述四种动态问题的轨迹是圆。题目具体表现为折叠问题、 旋转问题、角度不变问题等,此类问题综合性强,隐蔽性强,很容易造成同学们的丢分。本专题就隐圆模型 的相关问题进行梳理及对应试题分析,方便掌握。 模型1、动点定长模型(圆的定义) 若P 为动点,且B==P,则B、、P 三点共圆,圆心,B 半径 圆的定义:平面内到定点的距离等于定值的所有点构成的集合. 寻找20 极点 | 15 页 | 1.74 MB | 4 月前3
共 105 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11

