第09讲 函数与平面直角坐标系(讲义)(解析版)第09 讲 函数与平面直角坐标系 目 录 一、考情分析 二、知识建构 考点一 平面直角坐标系 题型01 用有序数对表示点的位置 考点二 点的坐标特征与变换 题型01 判断点所在的象限 题型02 由点到坐标轴的距离判断点的坐标 题型03 由点的坐标确定点到坐标轴的距离 题型04 由点在坐标系的位置确定点的坐标 题型05 由点在坐标系的位置确定坐标中未知数的值或取值范围 题型06 探索点的坐标规律 图形变换中点的规律探查 类型五 新定义问题中点的规律探查 考点三 坐标方法的简单应用 题型01 实际问题中用坐标表示位置 题型02 用方位角和距离确定物体位置 题型03 根据方位描述确定物体位置 题型04 平面直角坐标系中面积问题 类型一 直接利用面积公式求面积 类型二 已知三角形面积求点的坐标 类型三 利用割补法求面积 类型四 利用补形法求面积 类型五 与图形面积相关的存在性问题 考点四 函数 题型01 考点要求 新课标要求 命题预测 平面直角坐 标系 理解平面直角坐标系的有关概念,能画出平面直角坐标系 该专题内容是初中 代数最重要的部 分,是代数的基 础,非常重要,年 年都会考查,分值 为10 分左右预计 2024 年各地中考还 将出现,在选择、 填空题中出现的可 能性较大. 点的坐标 特征与变换 在给定的平面直角坐标系中,能根据坐标描出点的位置,由点的位置20 极点 | 87 页 | 8.08 MB | 4 月前3
第09讲 函数与平面直角坐标系(练习)(解析版)第09 讲 函数与平面直角坐标系 目 录 题型01 用有序数对表示点的位置 题型02 已知点的坐标确定点到直线的距离 题型03 已知点到直线的距离求点的坐标 题型04 判断点所在的象限 题型05 由点在坐标系的位置确定点的坐标 题型06 由点在坐标系的位置确定坐标中未知数的值或取值范围 题型07 探索点的坐标规律 题型08 实际问题中用坐标表示地点/路线 题型09 题型09 根据方位描述物体具体位置 题型10 平面直角坐标系的面积问题 题型11 函数解析式 题型12 求自变量的取值范围 题型13 求自变量的值或函数值 题型14 函数图象的识别 题型15 从函数图象中获取信息 题型16 动点问题的函数图象 题型01 用有序数对表示点的位置 1.(2021·湖北宜昌·统考模拟预测)如果第二列第一行用有序数对(2,1)表示,那么数对(3,6)和 ∴M点的纵坐标为0,横坐标与A点相等, 即M (1,0) 故选:. 【点睛】本题主要考查了点的坐标,熟记垂直于x轴的直线上的点的横坐标都相等是解答关键 2.(2023·四川泸州·统考一模)在平面直角坐标系xOy中,以点(−3,4 )为圆心,4 为半径的圆与x轴的位置 关系是( ) .相交 B.相离 .相切 D.无法判断 【答】 【分析】先找出圆心到x轴的距离,再与圆的半径进行比较,若圆心到x轴的距离小于半径,则圆与x轴相20 极点 | 78 页 | 6.12 MB | 4 月前3
第19讲 直角三角形(讲义)(解析版)第19 讲 直角三角形 目 录 一、考情分析 二、知识建构 考点一 直角三角形的性质与判定 题型01 利用直角三角形的性质求解 题型02 根据已知条件判定直角三角形 题型03 与直角三角形有关的面积计算 考点二 勾股定理 题型01 利用勾股定理求线段长 题型02 利用勾股定理求面积 题型03 已知两点坐标求两点距离 题型04 判断勾股数问题 题型05 利用勾股定理解决折叠问题 利用勾股定理解决折叠问题 题型06 勾股定理与格问题 题型07 勾股定理与无理数 题型08 以直角三角形三边为边长的图形面积 题型09 利用勾股定理求两条线段的平方和(差) 题型10 利用勾股定理证明线段的平方关系 题型11 勾股定理的证明方法 题型12 以弦图为背景的计算题 题型13 利用勾股定理构造图形解决问题 题型14 利用勾股定理解决实际问题 类型一 求梯子滑落高度 类型二 求旗杆高度 图形上与已知两地构成直角三角形的点 题型02 在格中判定直角三角形 题型03 利用勾股定理逆定理求解 题型04 利用勾股定理解决实际生活问题 考点要求 新课标要求 命题预测 直角三角形的 性质与判定 理解直角三角形的概念 探索并掌握直角三角形的性质定理:直 角三角形的两个锐角互余,直角三角形 斜边上的中线等于斜边的一半掌握有两 个角互余的三角形是直角三角形 该模块内容在中考中一直是较为重要的几何考20 极点 | 88 页 | 5.21 MB | 4 月前3
第19讲 直角三角形(练习)(解析版)第19 讲 直角三角形 目 录 题型01 利用直角三角形的性质求解 题型02 根据已知条件判定直角三角形 题型03 与直角三角形有关的面积计算 题型04 利用勾股定理求线段长 题型05 利用勾股定理求面积 题型06 已知两点坐标求两点距离 题型07 判断勾股数问题 题型08 勾股定理与格问题 题型09 勾股定理与无理数 题型10 以直角三角形三边为边长的图形面积 题型11 勾股定理与规律探究问题 题型17 在格中判定直角三角形 题型18 利用勾股定理逆定理求解 题型19 利用勾股定理解决实际生活问题 题型01 利用直角三角形的性质求解 1.(2023·广东梅州·统考一模)如图,已知l∥AB,CD⊥l于点D,若∠C=40°,则∠1的度数是 ( ) .30° B.40° .50° D.60° 【答】 【分析】根据直角三角形的性质求出∠CED,再根据平行线的性质解答即可. 故选:. 【点睛】本题考查的是直角三角形的性质、平行线的性质,掌握直角三角形的两锐角互余是解题的关键. 2.(2023·广东中山·校考一模)如图,在Rt △ABC中,∠ABC=90°,∠C=60°,点D为边AC的中 点,BD=2,则BC的长为( ) .❑ √3 B.2❑ √3 .2 D.4 【答】 【分析】根据三角形内角和定理可得∠=30°,由直角三角形斜边上的中线的性质得出=2BD=4,再利用含3020 极点 | 88 页 | 4.48 MB | 4 月前3
专题7.4 平面直角坐标系章末题型过关卷(解析版)第7 章 平面直角坐标系章末题型过关卷 【人版】 参考答与试题解析 一.选择题(共10 小题,满分30 分,每小题3 分) 1.(3 分)(2022 春•饶平县校级期末)已知直角坐标系中,点P(x,y)满足(5x+2y﹣ 12)2+|3x+2y 6| ﹣=0,则点P 坐标为( ) .(3,﹣15) B.(﹣3,﹣15) .(﹣2,﹣3) D.(2,﹣3) 【分析】直接利用绝对值的性质以及偶次方的性质得出x,y .(1,0) B.(1,2) .(2,1) D.(1,1) 【分析】根据题意首先确定原点的位置,进而得出“宝藏”的位置. 【解答】解:根据两个标志点(3,1),B(2,2)可建立如下所示的坐标系: 由平面直角坐标系知,“宝藏”点的位置是(1,1), 1 故选:D. 3.(3 分)(2022 春•饶平县校级期末)已知m 为任意实数,则点(m,m2+1)不在( ) .第一、二象限 B.第一、三象限 诊 断和改进运算中的问题,对全班学生进行了三次运算测试(每次测验满分均为100 分). 小明和小军同学帮助兵老师统计了某数学小组5 位同学(,B,,D,E)的三次测试成 绩,小明在下面两个平面直角坐标系里描述5 位同学的相关成绩.小军仔细核对所有数 据后发现,图1 中所有同学的成绩坐标数据完全正确,而图2 中只有一个同学的成绩纵 坐标数据有误. 以下说法中: ①同学第一次成绩50 分,第二次成绩4020 极点 | 16 页 | 236.48 KB | 4 月前3
专题7.1 平面直角坐标系【八大题型】(解析版)专题71 平面直角坐标系【八大题型】 【人版】 【题型1 判断点所在的象限】.................................................................................................................................1 【题型2 坐标轴上点的坐标特征】.......... ........................................................................... 15 【知识点1 平面直角坐标系的相关概念】 (1)建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴. (2)各部分名称:水平数轴叫x 轴 (横轴),竖直数轴叫y 轴 (纵轴),x 轴一般取向右 为正方向,y 故点P(x,x2+3x)一定不在第四象限. 1 故选:D. 【知识点2 坐标轴上点的坐标特征】 在平面直角坐标系中,x 轴上的点纵坐标为0,y 轴上的点横坐标为0,坐标原点横纵坐标 均为0 【题型2 坐标轴上点的坐标特征】 【例2】(2022 春•陇县期中)在平面直角坐标系中,点M(m 3 ﹣,m+1)在x 轴上,则点 P(m 1 ﹣,1﹣m)在( ) .第一象限 B.第二象限20 极点 | 18 页 | 326.28 KB | 4 月前3
第09讲 函数与平面直角坐标系(讲义)(原卷版)第09 讲 函数与平面直角坐标系 目 录 一、考情分析 二、知识建构 考点一 平面直角坐标系 题型01 用有序数对表示点的位置 考点二 点的坐标特征与变换 题型01 判断点所在的象限 题型02 由点到坐标轴的距离判断点的坐标 题型03 由点的坐标确定点到坐标轴的距离 题型04 由点在坐标系的位置确定点的坐标 题型05 由点在坐标系的位置确定坐标中未知数的值或取值范围 题型06 探索点的坐标规律 图形变换中点的规律探查 类型五 新定义问题中点的规律探查 考点三 坐标方法的简单应用 题型01 实际问题中用坐标表示位置 题型02 用方位角和距离确定物体位置 题型03 根据方位描述确定物体位置 题型04 平面直角坐标系中面积问题 类型一 直接利用面积公式求面积 类型二 已知三角形面积求点的坐标 类型三 利用割补法求面积 类型四 利用补形法求面积 类型五 与图形面积相关的存在性问题 考点四 函数 题型01 考点要求 新课标要求 命题预测 平面直角坐 标系 理解平面直角坐标系的有关概念,能画出平面直角坐标系 该专题内容是初中 代数最重要的部 分,是代数的基 础,非常重要,年 年都会考查,分值 为10 分左右预计 2024 年各地中考还 将出现,在选择、 填空题中出现的可 能性较大. 点的坐标 特征与变换 在给定的平面直角坐标系中,能根据坐标描出点的位置,由点的位置20 极点 | 39 页 | 6.01 MB | 4 月前3
第09讲 函数与平面直角坐标系(练习)(原卷版)第09 讲 函数与平面直角坐标系目 录 题型01 用有序数对表示点的位置 题型02 已知点的坐标确定点到直线的距离 题型03 已知点到直线的距离求点的坐标 题型04 判断点所在的象限 题型05 由点在坐标系的位置确定点的坐标 题型06 由点在坐标系的位置确定坐标中未知数的值或取值范围 题型07 探索点的坐标规律 题型08 实际问题中用坐标表示地点/路线 题型09 根据方位描述物体具体位置 题型10 平面直角坐标系的面积问题 题型11 函数解析式 题型12 求自变量的取值范围 题型13 求自变量的值或函数值 题型14 函数图象的识别 题型15 从函数图象中获取信息 题型16 动点问题的函数图象 题型01 用有序数对表示点的位置 1.(2021·湖北宜昌·统考模拟预测)如果第二列第一行用有序数对(2,1)表示,那么数对(3,6)和 ) .(1,0) B.(2,0) .(0,1) D.(0,2) 2.(2023·四川泸州·统考一模)在平面直角坐标系xOy中,以点(−3,4 )为圆心,4 为半径的圆与x轴的位置 关系是( ) .相交 B.相离 .相切 D.无法判断 3.(2021·广东广州·校考二模)在平面直角坐标系中,点(﹣1,3),点P(0,y)为y 轴上的一个动点, 当y= 时,线段P 的长得到最小值.20 极点 | 29 页 | 4.83 MB | 4 月前3
第7章 平面直角坐标系压轴题考点训练(学生版)第七章 平面直角坐标系压轴题考点训练 1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点 ,第二次运动到点 ,第三次运动到 ,…,按这样的运动规律,第 2022 次运动后,动点 的坐标是( ) . B. . D. 2.在平面直角坐标系中,点 经过某种变换后得到点 ,我们把点 叫做点 的好点.已知点 的好点为 ,点 的好点为 ,点 的好 点为 .(4,45) D.(5,45) 4.如图,在平面直角坐标系中,△ ,△ ,△ ,△ , ,都是等腰 直角三角形,且点 , , , , 的坐标分别为 , , , , ,依据图形所反映的规律,则 的坐标为() .(2,25) B.(2,26) .( , ) D.( , ) 5.在直角坐标系中, 为坐标原点,已知点 ,在坐标轴上确定点 ,使得 为 直角三角形,则符合条件的点 的个数共有( ) .2 个 B.3 个 .4 个 D.5 个 6.如图, , , ,…均为斜边在 轴上且斜边长分别为2,4,6… 的等腰直角三角形.若 的顶点坐标分别是 , , ,则按图 中所示规律,点 的坐标是( ) . B. . D. 7.如图,在平面直角坐标系中,点1(1,0)、2(3,0)、3(6,0)、4(10,0)、……,以12为对角 线作第一个正方形112B1,以23为对20 极点 | 5 页 | 332.16 KB | 4 月前3
第19讲 直角三角形(讲义)(原卷版)第19 讲 直角三角形 目 录 一、考情分析 二、知识建构 考点一 直角三角形的性质与判定 题型01 利用直角三角形的性质求解 题型02 根据已知条件判定直角三角形 题型03 与直角三角形有关的面积计算 考点二 勾股定理 题型01 利用勾股定理求线段长 题型02 利用勾股定理求面积 题型03 已知两点坐标求两点距离 题型04 判断勾股数问题 题型05 利用勾股定理解决折叠问题 利用勾股定理解决折叠问题 题型06 勾股定理与格问题 题型07 勾股定理与无理数 题型08 以直角三角形三边为边长的图形面积 题型09 利用勾股定理求两条线段的平方和(差) 题型10 利用勾股定理证明线段的平方关系 题型11 勾股定理的证明方法 题型12 以弦图为背景的计算题 题型13 利用勾股定理构造图形解决问题 题型14 利用勾股定理解决实际问题 类型一 求梯子滑落高度 类型二 求旗杆高度 图形上与已知两地构成直角三角形的点 题型02 在格中判定直角三角形 题型03 利用勾股定理逆定理求解 题型04 利用勾股定理解决实际生活问题 考点要求 新课标要求 命题预测 直角三角形的 性质与判定 理解直角三角形的概念 探索并掌握直角三角形的性质定理:直 角三角形的两个锐角互余,直角三角形 斜边上的中线等于斜边的一半掌握有两 个角互余的三角形是直角三角形 该模块内容在中考中一直是较为重要的几何考20 极点 | 33 页 | 3.81 MB | 4 月前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100

