专题24.5 圆内接四边形【六大题型】(解析版)专题245 圆内接四边形【六大题型】 【人版】 【题型1 利用圆内接四边形的性质求角度】.........................................................................................................1 【题型2 利用圆内接四边形的性质求线段长度】...................... .......................5 【题型3 利用圆内接四边形的性质求面积】.........................................................................................................9 【题型4 利用圆内接四边形判的性质断结论的正误】...................... ........................13 【题型5 利用圆内接四边形的性质进行证明】...................................................................................................16 【题型6 利用圆内接四边形的性质探究角或线段间的关系】.....................20 极点 | 21 页 | 477.95 KB | 4 月前3
专题24.5 圆内接四边形【六大题型】(原卷版)专题245 圆内接四边形【六大题型】 【人版】 【题型1 利用圆内接四边形的性质求角度】.........................................................................................................1 【题型2 利用圆内接四边形的性质求线段长度】...................... .......................2 【题型3 利用圆内接四边形的性质求面积】.........................................................................................................3 【题型4 利用圆内接四边形判的性质断结论的正误】...................... .........................4 【题型5 利用圆内接四边形的性质进行证明】.....................................................................................................5 【题型6 利用圆内接四边形的性质探究角或线段间的关系】....................20 极点 | 7 页 | 318.88 KB | 4 月前3
专题11 三角形中的重要模型之等直内接等直模型与等直+高分模型解读与提分精练(全国通用)(解析版)专题11 三角形中的重要模型之等直内接等直模型与等直+高分模型 等腰直角三角形,是初中数学中重要的特殊三角形,性质非常丰富!常见常用的性质大都以“等腰三 角形”、“直角三角形”、“对称”、“旋转拼接”、“勾股比 ”、“45°辅助线”、“半个正方 形”等角度拓展延伸,常在选填题中以压轴的形式出现。今天在解题探究学习中,碰到一道以等腰直角三 角形为背景的几何题,有些难度,同时获得一连串等腰直角 .........................................................................................2 模型1 等直内接等直模型................................................................................................ ...................................................................................15 模型1 等直内接等直模型 等直内接等直模型是指在等腰直角三角形斜边中点作出一个新的等腰直角三角形(该三角形的直角顶点为 原等腰直角三角形的斜边中点,其他两顶点落在其直角边上)。该模型也常以正方形为背景命题。 条件:已知如图,等腰直角三角形B,∠B=90°,P20 极点 | 54 页 | 3.38 MB | 4 月前3
专题14 三角形中的重要模型之帽子模型、等边截等长与等边内接等边模型解读与提分精练(全国通用)(解析版)专题14 三角形中的重要模型之帽子模型、等边截等长与等边内接等边模型 等腰(等边)三角形是中学阶段非常重要三角形,具有许多独特的性质和判定定理。中考数学的常客, 并且形式多样,内容新颖,能较好地考查同学们的相关能力。本专题将把等腰三角形的三类重要模型作系 统的归纳与介绍,方便大家对它有个全面的了解与掌握。 .......................................... .........................................................................................8 模型3 等边内接等边.................................................................................................. 等边内接等边 图1 图2 1)等边内接等边(截取型) 条件:如图1,等边三角形B 中,点D,E,F 分别在边B,B,上运动,且满足D=BE=F; 结论:三角形DEF 也是等边三角形。 证明:∵ 是等边三角形,∴ , . ∵ ,∴ . 在 和 中, ∴ ( ), ∴ .同理 ,∴ ,∴ 是等边三角形. 2)等边内接等边(垂线型)20 极点 | 68 页 | 4.35 MB | 4 月前3
专题11 三角形中的重要模型之等直内接等直模型与等直+高分模型解读与提分精练(全国通用)(原卷版)专题11 三角形中的重要模型之等直内接等直模型与等直+高分模型 等腰直角三角形,是初中数学中重要的特殊三角形,性质非常丰富!常见常用的性质大都以“等腰三 角形”、“直角三角形”、“对称”、“旋转拼接”、“勾股比 ”、“45°辅助线”、“半个正方 形”等角度拓展延伸,常在选填题中以压轴的形式出现。今天在解题探究学习中,碰到一道以等腰直角三 角形为背景的几何题,有些难度,同时获得一连串等腰直角 .........................................................................................2 模型1 等直内接等直模型................................................................................................ ...................................................................................15 模型1 等直内接等直模型 等直内接等直模型是指在等腰直角三角形斜边中点作出一个新的等腰直角三角形(该三角形的直角顶点为 原等腰直角三角形的斜边中点,其他两顶点落在其直角边上)。该模型也常以正方形为背景命题。 条件:已知如图,等腰直角三角形B,∠B=90°,P20 极点 | 16 页 | 1.21 MB | 4 月前3
专题14 三角形中的重要模型之帽子模型、等边截等长与等边内接等边模型解读与提分精练(全国通用)(原卷版)专题14 三角形中的重要模型之帽子模型、等边截等长与等边内接等边模型 等腰(等边)三角形是中学阶段非常重要三角形,具有许多独特的性质和判定定理。中考数学的常客, 并且形式多样,内容新颖,能较好地考查同学们的相关能力。本专题将把等腰三角形的三类重要模型作系 统的归纳与介绍,方便大家对它有个全面的了解与掌握。 .......................................... .........................................................................................3 模型3 等边内接等边.................................................................................................. 等边内接等边 图1 图2 1)等边内接等边(截取型) 条件:如图1,等边三角形B 中,点D,E,F 分别在边B,B,上运动,且满足D=BE=F; 结论:三角形DEF 也是等边三角形。 证明:∵ 是等边三角形,∴ , . ∵ ,∴ . 在 和 中, ∴ ( ), ∴ .同理 ,∴ ,∴ 是等边三角形. 2)等边内接等边(垂线型)20 极点 | 20 页 | 1.53 MB | 4 月前3
重难点突破09 相似三角形8种模型(A字、8字、射影定理、一线三等角、线束模型、三角形内接矩形、三平行模型、旋转相似模型)(原卷版)重难点突破09 相似三角形8 种模型 (字、8 字、射影定理、一线三等角、线束模型、三角形内接矩形、三平行模型、 手拉手模型) 目 录 题型01 字模型 题型02 8 字模型 题型03 射影定理 题型04 一线三等角模型 题型05 线束模型 题型06 三角形内接矩形模型 题型07 三平行模型 题型08 手拉手模型(旋转模型) 相似三角形的判定方法: 1)平 分别交AD 、AE和AC于点L、M和N, 求 LM MN 的值. 【拓展提高】 (3)如图3, 点E是正方形ABCD的边CD上的一个动点, AB=3, 延长CD至点F, 使 DF=2 DE, 连 接CG, 求CG的最小值. 37.(2022·浙江宁波·统考中考真题) (1)如图1,在△ABC中,D,E,F 分别为AB , AC ,BC上的点,DE∥BC ,BF=CF , AF交DE于点G, 立,请给出证明;如果不成立,请说明理由. (3)如图3,当点E 在AB的延长线上或点F 在AC的延长线上时,(1)中的结论是否成立?如果成立,请 给出证明;如果不成立,请说明理由. 题型06 三角形内接矩形模型 已知 图示 结论(性质) 若四边形DEFG 为 矩形,⊥B ①∆B~∆DG ②AD AB = AG AC = DG BC = AM AN ③若四边形DEFG 为正方形 即DG20 极点 | 32 页 | 2.40 MB | 4 月前3
重难点突破09 相似三角形8种模型(A字、8字、射影定理、一线三等角、线束模型、三角形内接矩形、三平行模型、手拉手模型)(解析版)重难点突破09 相似三角形8 种模型 (字、8 字、射影定理、一线三等角、线束模型、三角形内接矩形、三平行模型、 手拉手模型) 目 录 题型01 字模型 题型02 8 字模型 题型03 射影定理 题型04 一线三等角模型 题型05 线束模型 题型06 三角形内接矩形模型 题型07 三平行模型 题型08 手拉手模型(旋转模型) 相似三角形的判定方法: 1)平 AD, ∴BD BA = BG BE =2 3, 又BG=8 3, ∴BE=BG× 3 2=4, ∴CE=6−4=2, 故答为:2. 【点睛】本题考查勾股定理,等腰直角三角形性质及相似三角形的判定与性质综合,解题关键在于正确做 出辅助线,利用相似三角形的性质得出对应边成比例求出答. 2.(2020·浙江杭州·统考中考真题)如图是一张矩形纸片,点E 在B 边上,把△BCE沿直线E ∴△BE∽△GE, ∴BE EG = AB CG =2k 3k =2 3, 故选:. 【点睛】本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行 四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键. 12.(2020·浙江杭州·统考一模)如图,点是△B 边B 上一点,过点的直线分别交B,所在直线于点M,, 且AB AM =m,AC20 极点 | 133 页 | 4.17 MB | 4 月前3
高考数学答题技巧题型19 10类球体的外接及内切解题技巧(特殊几何体、墙角、对棱相等、侧棱垂直底面、侧面垂直底面、二面角综合、数学文化、最值、内切、球心不确定)(解析版)(53页)题型19 10 类球体的外接及内切解题技巧 (特殊几何体、墙角、对棱相等、侧棱垂直底面、侧面垂直底面、 二面角综合、数学文化、最值、内切、球心不确定) 技法01 特殊几何体外接球的应用及解题技巧 知识迁移 球的表面积:S=4πR2 球的体积:V=πR3 底面外接圆的半径r 的求法 (1)正弦定理 (2)直角三角形:半径等于斜边的一半 (3)等边三角形:半径等于三分之二高 几个与球有关的切、接常用结论 (1)正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=a. (2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=. (3)正四面体的外接球与内切球的半径之比为3 1. ∶ 技法01 特殊几何体外接球的应用及解题技巧 技法02 技法02 墙角问题的应用及解题技巧 技法03 对棱相等问题的应用及解题技巧 技法04 侧棱垂直底面问题的应用及解题技巧 技法05 侧面垂直于底面问题的应用及解题技巧 技法06 二面角与球体综合的应用及解题技巧 技法07 数学文化与球体综合的应用及解题技巧 技法08 最值与球体综合的应用及解题技巧 技法09 内切球综合的应用及解题技巧 技法1020 极点 | 63 页 | 4.32 MB | 6 月前3
高考数学答题技巧题型19 10类球体的外接及内切解题技巧(特殊几何体、墙角、对棱相等、侧棱垂直底面、侧面垂直底面、二面角综合、数学文化、最值、内切、球心不确定)(原卷版)(23页)题型19 10 类球体的外接及内切解题技巧 (特殊几何体、墙角、对棱相等、侧棱垂直底面、侧面垂直底面、 二面角综合、数学文化、最值、内切、球心不确定) 技法01 特殊几何体外接球的应用及解题技巧 知识迁移 球的表面积:S=4πR2 球的体积:V=πR3 底面外接圆的半径r 的求法 (1)正弦定理 (2)直角三角形:半径等于斜边的一半 (3)等边三角形:半径等于三分之二高 (3)等边三角形:半径等于三分之二高 (4)长(正)方形:半径等于对角线的一半 几个与球有关的切、接常用结论 (1)正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=a. (2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=. (3)正四面体的外接球与内切球的半径之比为3 特殊几何体外接球的应用及解题技巧 技法02 墙角问题的应用及解题技巧 技法03 对棱相等问题的应用及解题技巧 技法04 侧棱垂直底面问题的应用及解题技巧 技法05 侧面垂直于底面问题的应用及解题技巧 技法06 二面角与球体综合的应用及解题技巧 技法07 数学文化与球体综合的应用及解题技巧 技法08 最值与球体综合的应用及解题技巧 技法09 内切球综合的应用及解题技巧20 极点 | 28 页 | 1.92 MB | 6 月前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100

