2018年高考数学试卷(文)(天津)(空白卷)
195.79 KB
5 页
0 下载
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .docx | 3 |
| 概览 | ||
绝密★启用前 2018年普通高等学校招生全国统一考试(天津卷) 数学(文史类) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用 时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。 答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘 贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无 效。考试结束后,将本试卷和答题卡一并交回。 祝各位考生考试顺利! 第Ⅰ卷 注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改 动,用橡皮擦干净后,再选涂其他答案标号。 2.本卷共8小题,每小题5分,共40分。 参考公式: ·如果事件 A,B 互斥,那么 P(A∪B)=P(A)+P(B). ·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高. ·棱锥的体积公式,其中表示棱锥的底面积,h表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,,,则 (A) (B) (C) (D) (2)设变量满足约束条件则目标函数的最大值为 (A)6 (B)19 (C)21 (D)45 (3)设,则“”是“” 的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 (4)阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出 的值为 (A)1 (B)2 (C) 3 (D)4 (5)已知,则的大小关系为 (A) (B) (C) (D) (6)将函数的图象向右平移个单位长度,所得图象对应的函数 (A)在区间 上单调递增 (B)在区间 上单调递减 (C)在区间 上单调递增 (D)在区间 上单调递减 (7)已知双曲线 的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两 点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为 (A) (B)(C) (D) (8)在如图的平面图形中,已知,则的值为 (A) (B) (C) (D)0 第Ⅱ卷 注意事项: 1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。 2.本卷共12小题,共110分。 二.填空题:本大题共6小题,每小题5分,共30分. (9)i是虚数单位,复数=__________. (10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 __________. (11)如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的 体积为__________. (12)在平面直角坐标系中,经过三点(0,0), (1,1),(2,0)的圆的方程为__________. (13)已知a,b∈R,且a–3b+6=0,则2a+的最小值为__________.(14)已知 a∈R,函数 若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是__________. 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演 算步骤. (15)(本小题满分13分) 已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采 用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2 名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率. (16)(本小题满分13分) 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B–). (Ⅰ)求教B的大小; (Ⅱ)设a=2,c=3,求b和sin(2A–B)的值. (17)(本小题满分13分) 如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为 棱AB的中点,AB=2,AD=,∠BAD=90°. (Ⅰ)求证:AD⊥BC; (Ⅱ)求异面直线BC与MD所成角的余弦值; (Ⅲ)求直线CD与平面ABD所成角的正弦值. (18)(本小题满分13分) 设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0, 其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6. (Ⅰ)求Sn和Tn; (Ⅱ)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值. (19)(本小题满分14分) 设椭圆 的右顶点为A,上顶点为B.已知椭圆的离心率为,. (I)求椭圆的方程; (II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若 的面积是面积的2倍,求k的值. (20)(本小题满分14分) 设函数,其中,且是公差为的等差数列. (I)若 求曲线在点处的切线方程; (II)若,求的极值; (III)若曲线 与直线 有三个互异的公共点,求d的取值范围.
| ||
下载文档到本地,方便使用
- 可预览页数已用完,剩余
3 页请下载阅读 -
文档评分

