模型25 勾股定理——出水芙蓉模型-解析版
172.35 KB
5 页
0 下载
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .docx | 3 |
| 概览 | ||
勾股定理 模型(二十五)——出水芙蓉模型 湖静浪平六月天,荷花半尺出水面; 忽来一阵狂风急,吹倒花水中偃。 湖面之上不复见,入秋渔翁始发现; 残花离根二尺遥,试问水深尽若干? ——印度数学家拜斯迦罗(公元 1114—1185 年) 【模型】读诗求解“ 出水3 尺一红莲,风吹花朵齐水面 ,水面移动有6 尺,求水深 几何请你算”。 【思路】利用勾股定理建立方程,求出水深为 45 尺 【解析】设水深P=x 尺, PB=P=(x+3)尺, 根据勾股定理得:P²+²=P²,x²+4²=(x+3)² 解得 x=45 答∶水深 45 尺 1.(2019·河北唐山·八年级期中)如图,小丽在荷塘边观看荷花,想测试池塘的水深,她把一株竖直的荷花(如 图)拉到岸边,花柄正好与水面成60°夹角,测得 长 ,则荷花处水深 为( ) . B. . D. 【答】D 【分析】由图可看出,三角形B 为一直角三角形,已知一直角边和一角,则可通过30°角的特殊性质及勾股定理求 另两边. 【详解】解:∵∠B=90°,∠B=60°, ∴∠=30°, ∴B=2B=2, ∴在Rt△B 中, , 故选:D. 【点睛】本题是勾股定理的应用,主要考查了在直角三角形中30°角所对的直角边等于斜边的一半,比较简单. 2.(2022·黑龙江绥化·八年级期末)在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直 拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2 尺远,则这个湖的水深是______尺. 【答】375 【分析】设这个湖的水深是x 尺,则荷花的长为(x+05)尺,运用勾股定理列方程求解即可. 【详解】解:设这个湖的水深是x 尺,则荷花的长为(x+05)尺, 根据题意,得 , 解得:x=375, ∴这个湖的水深是375 尺. 故答为:375. 【点睛】本题考查了勾股定理的应用,理解题意,能从实际问题中抽象出数学模型是解答的关键. 1.(2022·四川·会东县参鱼中学八年级阶段练习)池塘中有一株荷花的茎长为,无风时露出水面部分=04 米,如 果把这株荷花旁边拉至使它的顶端恰好到达池塘的水面B 处,此时荷花顶端离原来位置的距离B=12 米,求这颗 荷花的茎长. 【答】这颗荷花的茎长为2m 【分析】根据题意直接得出三角形各边长,进而利用勾股定理求出答. 【详解】解:由题意可得:设=xm,则=(x 04 ﹣ )m, 故2+B2=B2, 则 , 解得:x=2, 答:这颗荷花的茎长为2m. 【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的方程思想. 2.(2020·山东·济南市长清区实验中学八年级阶段练习)有一朵荷花,花朵高出水面1 尺,一阵大风把它吹歪, 使花朵刚好落在水面上,此时花朵离原位置的水平距离为3 尺,此水池的水深有多少尺? 【答】4 尺 【分析】仔细分析该题,可画出草图,关键是水深、荷花移动的水平距离及花朵的高度构成一直角三角形,解此 直角三角形即可 【详解】解: 设水深x 尺,那么荷花径的长为(x+1)尺,如图 由匀股定理得: ' 解得:x=4 答:水池的水深有4 尺 【点睛】本题考查正确运用勾股定理,善于观察题目的信息画图是解题的关键. 3.(2022·山东·聊城市东昌府区水城双语学校八年级期中)古诗赞美荷花“竹色溪下绿,荷花镜里香”,平静的 湖面上,一朵荷花亭亭玉立,露出水面10 m,忽见 它随风斜倚,花朵恰好浸入水面,仔细观察,发现荷花偏离原地 40 m(如图)请部:水深多少? 【答】水深为75m 【详解】试题分析:设水深为,则荷花的高 因风吹花朵齐及水面,且水平距离为40m,那么水深与水平 40 组成一个以 为斜边的直角三角形,根据勾股定理即可求出答. 试题解析:设水深为,则荷花的高+10,且水平距离为40m, 则 解得=75 答:水深75m 1.(2019·安徽·定远县第一初级中学二模)印度数学家什迦罗在其著作中提出过“荷花问题”:“平平湖水清可 鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题, 湖水如何知深浅?” 此题的大致意思是:湖水中一枝荷花高出湖面半尺,被风一吹,荷花倾斜,正好与湖面持平,且荷花与原来位置 的水平距离为二尺,问湖水有多深. 【答】湖水深375 尺. 【分析】先根据题意构造出直角三角形(即荷花的折断与不断时恰好构成直角三角形),再根据已知条件求解. 【详解】设水深x 尺,则荷花茎的长度为x+05, 根据勾股定理得: 解得:x=375. 答:湖水深375 尺. 【点睛】此题考查勾股定理的应用,解题关键在于结合题意列出方程.
| ||
下载文档到本地,方便使用
- 可预览页数已用完,剩余
3 页请下载阅读 -
文档评分

