word文档 2018年高考数学试卷(江苏)(空白卷) VIP文档

251.57 KB 8 页 0 下载 0 评论 0 收藏
语言 格式 评分
中文(简体)
.docx
3
概览
2018年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 注意事项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160 分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一片交回。 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填 写在试卷及答题卡的规定位置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本 人是否相符。 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作 答,在其他位置作答一律无效。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式: 锥体的体积,其中是锥体的底面积,是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题 卡相应位置上. 1.已知集合,,那么 ▲ . 2.若复数满足,其中i是虚数单位,则的实部为 ▲ . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出 的分数的平均数为 ▲ . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为 ▲ . 5.函数的定义域为 ▲ . 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好 选中2名女生的概率为 ▲ . 7.已知函数的图象关于直线对称,则的值是 ▲ . 8.在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心 率的值是 ▲ . 9.函数满足,且在区间上, 则的值为 ▲ . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积 为 ▲ . 11.若函数在 内有且只有一个零点,则在上的最大值与最小值的和为 ▲ . 12.在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C 与直线l交于另一点D.若,则点A的横坐标为 ▲ . 13.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为 ▲ . 14.已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的 前n项和,则使得成立的n的最小值为 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解 答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 在平行六面体中,. 求证:(1); (2). 16.(本小题满分14分) 已知为锐角,,. (1)求的值; (2)求的值. 17.(本小题满分14分) 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的 中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50 米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形 ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与 MN所成的角为. (1)用分别表示矩形和的面积,并确定的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬 菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总 产值最大. 18.(本小题满分16分) 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为. (1)求椭圆C及圆O的方程; (2)设直线l与圆O相切于第一象限内的点P. ①若直线l与椭圆C有且只有一个公共点,求点P的坐标; ②直线l与椭圆C交于两点.若的面积为, 求直线l的方程. 19.(本小题满分16分) 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”. (1)证明:函数与不存在“S点”; (2)若函数与存在“S点”,求实数a的值; (3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S 点”,并说明理由. 20.(本小题满分16分) 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列. (1)设,若对均成立,求d的取值范围; (2)若,证明:存在,使得对均成立,并求的取值范围(用表示). 数学Ⅱ(附加题) 21.【选做题】本题包括 A、B、C、D 四小题,请选定其中两小题,并在相应 的答题区域内作答 .若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演 算步骤. A.[选修4—1:几何证明选讲](本小题满分10分) 如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O 的切线,切点为C.若,求 BC 的长. B.[选修4—2:矩阵与变换](本小题满分10分) 已知矩阵. (1)求的逆矩阵; (2)若点P在矩阵对应的变换作用下得到点,求点P的坐标. C.[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的 弦长. D.[选修4—5:不等式选讲](本小题满分10分) 若x,y,z为实数,且x+2y+2z=6,求的最小值. 【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作 答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分) 如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中 点. (1)求异面直线BP与AC1所成角的余弦值; (2)求直线CC1与平面AQC1所成角的正弦值. 23.(本小题满分10分) 设,对1,2,···,n的一个排列,如果当s<t时,有,则称是排列的一个逆 序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排 列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1, 2,···,n的所有排列中逆序数为k的全部排列的个数. (1)求的值; (2)求的表达式(用n表示).
下载文档到本地,方便使用
共 8 页, 还有 1 页可预览, 继续阅读
文档评分
请文明评论,理性发言.