2023年高考数学试卷(新课标Ⅱ卷)(空白卷)
317.44 KB
7 页
0 下载
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .docx | 3 |
| 概览 | ||
1/4 2023 年全国新高考Ⅱ卷 一、选择题:本大题共8 小题,每小题5 分,共40 分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1. 在复平面内, 对应的点位于( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 设集合 , ,若 ,则 ( ). A. 2 B. 1 C. D. 3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高 中部两层共抽取60 名学生,已知该校初中部和高中部分别有400 名和200 名学生,则不同的抽样结果共有 ( ). A. 种 B. 种 C. 种 D. 种 4. 若 为偶函数,则 ( ). A. B. 0 C. D. 1 5. 已知椭圆 的左、右焦点分别为 , ,直线 与C 交于A,B 两点,若 面积是 面积的2 倍,则 ( ). A. B. C. D. 6. 已知函数 在区间 上单调递增,则a 的最小值为( ). A. B. e C. D. 1/4 7. 已知 为锐角, ,则 ( ). A. B. C. D. 8. 记 为等比数列 的前n 项和,若 , ,则 ( ).A. 120B. 85 C. D. 2/4 二、选择题:本题共4 小题,每小题5 分,共20 分。在每小题给出的选项中,有多项符合题目要求。全部 选对的得5 分,部分选对的得2 分,有选错的得0 分。 9. 已知圆锥的顶点为P,底面圆心为O,AB 为底面直径, , ,点C 在底面圆周上, 且二面角 为45°,则( ). A. 该圆锥的体积为 B. 该圆锥的侧面积为 C. D. 的 面积为 10. 设O 为坐标原点,直线 过抛物线 的焦点,且与C 交于M,N 两点, l 为C 的准线,则( ). A. B. C. 以MN 为直径的圆与l 相切 D. 为等腰三角形 11. 若函数 既有极大值也有极小值,则( ). A. B. C. D. 12. 在信道内传输0,1 信号,信号的传输相互独立.发送0 时,收到1 的概率为 ,收到0 的 概率为 ;发送1 时,收到0 的概率为 ,收到1 的概率为 . 考虑两种传输方案:单次 传输和三次传输.单次传输是指每个信号只发送1 次,三次传输 是指每个信号重复发送3 次.收到的信号 需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的 即为译码(例如,若依次收到1,0,1,则译码为1). A. 采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1 的概率为 B. 采用三次传输方案,若发送1,则依次收到1,0,1 的概率为 C. 采用三次传输方案,若发送1,则译码为1 的概率为 2/4 D. 当 时,若发送0,则采用三次传输方案译码为0 的概率大于采用单次传输方案译码为0 的概 率 三、填空题:本大题共4 小题,每小题5 分,共20 分。 13. 已知向量 , 满足 , ,则 ______. 14. 底面边长为4 的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3 的正四棱锥,所 得棱台的体积为______.15. 已知直线 与 交于A,B 3/4 两点,写出满足“ 面积为 ”的m 的一个值______. 16. 已知函数 ,如图A,B 是直线 与曲线 的两个交点,若 , 则 ______. 四、解答题:本大题共6 小题,共70 分。解答应写出必要的 文字说明、证 明过程或演算步骤。 17. 记 的内角 的对边分别为 ,已知 的面积为 , 为 中点,且 . (1)若 ,求 ; (2)若 ,求 . 18. 为等差数列, ,记 , 分别为数列 , 的前n 项和, , . (1)求 的通项公式; (2)证明:当 时, . 19. 某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查, 得到如下的患病者和未患病者该指标的频率分布直方图: 3/4 4/4 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c 的人判定为阳性,小于或等于c 的人判 定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为 ;误诊率是将未患病者判定为阳 性的概率,记为 .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率. (1)当漏诊率 %时,求临界值c 和误诊率 ; (2)设函数 ,当 时,求 的解析式,并求 在区间 的 最小值. 20. 如图,三棱锥 中, , , ,E 为BC 的中点. (1)证明: ; (2)点F 满足 ,求二面角 的正弦值. 21. 已知双曲线C 的中心为坐标原点,左焦点为 ,离心率为 . (1)求C 的方程; (2)记C 的左、右顶点分别为 , ,过点 的直线与C 的左支交于M,N 两点,M 在第二象限, 直线 与 交于点P.证明:点 在定直线上. 22. (1)证明:当 时, ;(2)已知函数 ,若 是 的极大值点,求a 的取值范围.
| ||
下载文档到本地,方便使用
共 7 页, 还有
1 页可预览,
继续阅读
文档评分

