word文档 2023年高考数学试卷(新课标Ⅰ卷)(空白卷) VIP文档

266.80 KB 9 页 0 下载 0 评论 0 收藏
语言 格式 评分
中文(简体)
.docx
3
概览
1/5 绝密★启用前 试卷类型:A 2023 年普通高等学校招生全国统一考试 新课标Ⅰ卷数学 本试卷共4 页,22 小题,满分150 分.考试用时120 分钟. 注意事项: 1.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写 在答题卡上。用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右 上角“条形码粘贴处”. 2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂 黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应 位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按 以上要求作答的答案无效. 4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1/5 1. 已知集合 , ,则 ( ) A. B. C. D. 2 2. 已知 ,则 ( ) A. B. C. 0 D. 1 3. 已知向量 ,若 ,则( ) A. B. C. D. 4. 设函数 在区间 上单调递减,则 的取值范围是( )A. B. C. D. 2/5 5. 设椭圆 的离心率分别为 .若 ,则 ( ) A. B. C. D. 6. 过点 与圆 相切的 两条直线的夹角为 ,则 ( ) A. 1 B. C. D. 7. 记 为数列 的前 项和,设甲: 为等差数列;乙: 为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知 ,则 ( ). A. B. C. D. 二、选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题 目要求.全部选对的得5 分,部分选对的得2 分,有选错的得0 分. 9. 有一组样本数据 ,其中 是最小值, 是最大值,则( ) A. 的平均数等于 的平均数 B. 的中位数等于 的中位数 C. 的标准差不小于 的标准差 D. 的极差不大于 的极差 2/5 10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级 ,其中常数 是听觉下限阈值, 是实际声压.下表为不同声源的声压级: 声源 与声源的距离 声压级 3/5 燃油汽车 10 混合动力汽车 10 电动汽车 10 40 已知在距离燃油汽车、混合动力汽车、电动汽车 处测得实际声压分别为 ,则( ). A. B. C. D. 11. 已知函数的 定义域为 , ,则( ). A. B. C. 是偶函数 D. 为 的极小值点 12. 下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( ) A. 直径为 的球体 B. 所有棱长均为 的四面体 C. 底面直径为 ,高为 的圆柱体 D. 底面直径为 ,高为 的圆柱体 三、填空题:本题共4 小题,每小题5 分,共20 分. 13. 某学校开设了4 门体育类选修课和4 门艺术类选修课,学生需从这8 门课中选修2 门或3 门课,并且每 类选修课至少选修1 门,则不同的选课方案共有________种(用数字作答). 14. 在正四棱台 中, ,则该棱台的体积为________. 15. 已知函数 在区间 有且仅有3 个零点,则 的取值范围是________. 3/5 16. 已知双曲线 的左、右焦点分别为 .点 在 上,点 在 轴上, ,则 的离心率为________. 四、解答题:本题共6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤. 17. 已知在 中, .(1)求 ; (2)设 ,求 边上的高. 18. 如图,在正四棱柱 中, .点 分别在棱 4/5 , 上, . (1)证明: ; (2)点 在棱 上,当二面角 为 时,求 . 19. 已知函数 . (1)讨论 的单调性; (2)证明:当 时, . 20. 设等差数列 的公差为 ,且 .令 ,记 分别为数列 的前 项和. (1)若 ,求 的通项公式; (2)若 为等差数列,且 ,求 . 21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮 无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1 次 投篮的人选,第1 次投篮的人是甲、乙的概率各为0.5. (1)求第2 次投篮的人是乙的概率; (2)求第次投篮的人是甲的概率; (3)已知:若随机变量 服从两点分布,且 ,则 4/5 .记前 次(即从第1 次到第 次投篮)中甲投篮的次数为 ,求 . 22. 在直角坐标系 中,点 到 轴的距离等于点 到点 的距离,记动点 的轨迹为 . (1)求 的方程; 5/5 (2)已知矩形 有三个顶点在 上,证明:矩形 的周长大于 .
下载文档到本地,方便使用
共 9 页, 还有 1 页可预览, 继续阅读
文档评分
请文明评论,理性发言.