2017年高考数学试卷(文)(新课标Ⅰ)(空白卷)
77.57 KB
5 页
0 下载
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .docx | 3 |
| 概览 | ||
2017年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选 项中,只有一项是符合题目要求的。 1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( ) A.A∩B={x|x<} B.A∩B=∅ C.A∪B={x|x<} D.A∪B=R 2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩 产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这 种农作物亩产量稳定程度的是( ) A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差 C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数 3.(5分)下列各式的运算结果为纯虚数的是( ) A.i(1+i)2 B.i2(1﹣i) C.(1+i)2 D.i(1+i) 4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆 中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取 一点,则此点取自黑色部分的概率是( ) A. B. C. D. 5.(5分)已知F是双曲线C:x2﹣ =1的右焦点,P是C上一点,且PF与x轴垂 直,点A的坐标是(1,3),则△APF的面积为( ) A. B. C. D. 6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是 ( ) A. B. C. D. 7.(5分)设x,y满足约束条件 ,则z=x+y的最大值为( ) A.0 B.1 C.2 D.3 8.(5分)函数y= 的部分图象大致为( ) A. B. C. D. 9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0, 2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在 和 两个空白框中,可以分别填入( ) A.A>1000和n=n+1 B.A>1000和n=n+2 C.A≤1000和n=n+1 D.A≤1000和n=n+2 11.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣ cosC)=0,a=2,c= ,则C=( ) A. B. C. D. 12.(5分)设A,B是椭圆C: + =1长轴的两个端点,若C上存在点M满足 ∠AMB=120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0, ]∪[9,+∞) C.(0, 1]∪[4,+∞) D.(0, ]∪[4,+∞) 二、填空题:本题共4小题,每小题5分,共20分。 13.(5分)已知向量=(﹣1,2),=(m,1),若向量+ 与垂直,则 m= .14.(5分)曲线y=x2+ 在点(1,2)处的切线方程为 . 15.(5分)已知α∈(0, ),tanα=2,则cos(α﹣ )= . 16.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直 径.若平面SCA⊥ 平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为 . 三、解答题:共70分。解答应写出文字说明、证明过程或演算过程.第17~21 题为必选题,每个试题考生都必须作答。第22、23题为选考题,考生根据要 求作答。(一)必考题:共60分。 17.(12分)记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6. (1)求{an}的通项公式; (2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列. 18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥 的侧面积. 19.(12分)为了监控某种零件的一条生产线的生产过 程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单 位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 10 11 12 13 14 15 16 零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得 = xi=9.97 ,s= = ≈0.212 , ≈18.439, (xi﹣)(i﹣8.5)=﹣2.78,其中xi为抽取的第i个零件 的尺寸,i=1,2,…,16. (1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天 生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则 可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(﹣3s,+3s)之外的零件,就认 为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过 程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查? (ⅱ)在(﹣3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产 线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(xi,yi)(i=1,2,…,n)的相关系数r= , ≈0.09. 20.(12分)设A,B为曲线C:y= 上两点,A与B的横坐标之和为4. (1)求直线AB的斜率; (2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线 AB的方程. 21.(12分)已知函数f(x)=ex(ex﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则 按所做的第一题计分。[选修4-4:坐标系与参数方程选讲](10分) 22.(10分)在直角坐标系xOy中,曲线C的参数方程为 ,(θ为参 数),直线l的参数方程为 ,(t为参数). (1)若a=﹣1,求C与l的交点坐标; (2)若C上的点到l距离的最大值为 ,求a. [选修4-5:不等式选讲](10分) 23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.
| ||
下载文档到本地,方便使用
- 可预览页数已用完,剩余
3 页请下载阅读 -
文档评分

