2017年高考数学试卷(文)(新课标Ⅱ)(空白卷)
57.52 KB
5 页
0 下载
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .docx | 3 |
| 概览 | ||
2017年全国统一高考数学试卷(文科)(新课标Ⅱ) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项 中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( ) A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=( ) A.1﹣i B.1+3i C.3+i D.3+3i 3.(5分)函数f(x)=sin(2x+ )的最小正周期为( ) A.4π B.2π C.π D. 4.(5分)设非零向量,满足| + |=| ﹣|则( ) A.⊥ B.| |=| | C.∥ D.| |>| | 5.(5分)若a>1,则双曲线 ﹣y2=1的离心率的取值范围是( ) A.( ,+∞) B.( ,2) C.(1, ) D.(1,2) 6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的 三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积 为( ) A.90π B.63π C.42π D.36π 7.(5分)设x,y 满足约束条件 ,则z=2x+ y的最小值是( ) A.﹣15 B.﹣9 C.1 D.9 8.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是( ) A.(﹣∞,﹣2) B.(﹣∞,﹣1) C.(1,+∞) D.(4,+∞) 9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师 说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看 丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根 据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( ) A.2 B.3 C.4 D.5 11.(5分)从分别写有1,2, 3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张 卡片上的数大于第二张卡片上的数的概率为( ) A. B. C. D. 12.(5分)过抛物线C:y2=4x的焦点F,且斜率为 的直线交C于点M(M在x 轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为 ( ) A. B.2 C.2 D.3 二、填空题,本题共4小题,每小题5分,共20分 13.(5分)函数f(x)=2cosx+sinx的最大值为 . 14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)= . 15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上, 则球O的表面积为 . 16 .(5 分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 2bcosB=acosC+ccosA,则B= . 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21 题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要 求作答.(一)必考题:共60分. 17.(12分)已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为 Tn,a1=﹣1,b1=1,a2+b2=2. (1)若a3+b3=5,求{bn}的通项公式; (2)若T3=21,求S3. 18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面 ABCD,AB=BC= AD,∠BAD=∠ABC=90°. (1)证明:直线BC∥平面PAD; (2)若△PCD面积为2 ,求四棱锥P﹣ABCD的体积. 19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收 获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频 率分布直方图如下: (1)记A表 示事件“旧养殖法的箱产量低于50kg”,估计A的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖 方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附: P(K2≥K) 0.050 0.010 0.001 K 3.841 6.635 10.828 K2= . 20.(12分)设O为坐标原点,动点M在椭圆C: +y2=1上,过M作x轴的垂 线,垂足为N,点P满足 = . (1)求点P的轨迹方程; (2)设点Q在直线x=﹣3上,且 • =1.证明:过点P且垂直于OQ的直线l过C的 左焦点F. 21.(12分)设函数f(x)=(1﹣x2)ex. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做 的第一题计分。[选修4-4:坐标系与参数方程] 22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建 立极坐标系,曲线C1的极坐标方程为ρcosθ=4. (1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨 迹C2的直角坐标方程; (2)设点A的极坐标为(2, ),点B在曲线C2上,求△OAB面积的最大值. [选修4-5:不等式选讲] 23.已知a>0,b>0,a3+b3=2.证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2.
| ||
下载文档到本地,方便使用
- 可预览页数已用完,剩余
3 页请下载阅读 -
文档评分

