2018年高考数学试卷(文)(新课标Ⅰ)(空白卷)
62.90 KB
5 页
0 下载
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .docx | 3 |
| 概览 | ||
2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项 中,只有一项是符合题目要求的。 1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2} C.{0} D.{﹣2,﹣1,0,1,2} 2.(5分)设z= +2i,则|z|=( ) A.0 B. C.1 D. 3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现 翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村 建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论 中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.(5分)已知椭圆C: + =1的一个焦点为(2,0),则C的离心率为 ( ) A. B. C. D. 5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平 面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A. 12 π B.12π C.8 π D.10π 6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f (x)在点(0,0)处的切线方程为( ) A.y=﹣2x B.y=﹣x C.y=2x D.y=x 7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则 =( ) A. ﹣ B. ﹣ C. + D. + 8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则( ) A.f(x)的最小正周期为π,最大值为3 B.f(x)的最小正周期为π,最大值为4 C.f(x)的最小正周期为2π,最大值为3 D.f(x)的最小正周期为2π,最大值为4 9.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在 此圆柱侧面上,从M到N的路径中,最短路径的长度为( ) A.2 B.2 C.3 D.2 10.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角 为30°,则该长方体的体积为( ) A.8 B.6 C.8 D.8 11.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上 有两点A(1,a),B(2,b),且cos2α= ,则|a﹣b|=( ) A. B. C. D.1 12.(5分)设函数f(x)= ,则满足f(x+1)<f(2x)的x的取值范 围是( ) A.(﹣∞,﹣1] B.(0,+∞) C.(﹣1,0) D.(﹣∞,0) 二、填空题:本题共4小题,每小题5分,共20分。 13.(5分)已知函数f(x)=log2(x2+a),若f(3)=1,则a= . 14.(5分)若x,y满足约束条件 ,则z=3x+2y的最大值为 . 15.(5分)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|= . 16 .(5 分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知 bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为 . 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21 题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要 求作答。(一)必考题:共60分。 17.(12分)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn= . (1)求b1,b2,b3; (2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式. 18.(12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折 痕将△ACM折起,使点M到达点D的位置,且AB⊥DA. (1)证明:平面ACD⊥平面ABC; (2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ= DA,求三棱锥Q﹣ABP 的体积. 19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3) 和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表 日用水量 [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) 频数 1 3 2 4 9 26 5 使用了节水龙头50天的日用水量频数分布表 日用水量 [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) 频数 1 5 13 10 16 5 (1)作出使用了节水龙头50天的日用水量数据的频率分布直方图; (2)估计该家庭使用节水 龙头后,日用水量小于0.35m3的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算, 同一组中的数据以这组数据所在区间中点的值作代表) 20.(12分)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程; (2)证明:∠ABM=∠ABN. 21.(12分)已知函数f(x)=aex﹣lnx﹣1. (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间; (2)证明:当a≥时,f(x)≥0. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则 按所做的第一题计分。[选修4-4:坐标系与参数方程](10分) 22.(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极 点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣ 3=0. (1)求C2的直角坐标方程; (2)若C1与C2有且仅有三个公共点,求C1的方程. [选修4-5:不等式选讲](10分) 23.已知f(x)=|x+1|﹣|ax﹣1|. (1)当a=1时,求不等式f(x)>1的解集; (2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.
| ||
下载文档到本地,方便使用
- 可预览页数已用完,剩余
3 页请下载阅读 -
文档评分

