积分充值
 首页
办公文档
PPT模板
小初高教育
小学初中高中教师资料
高等教育
考研考证大学生毕业
医药卫生
技能赚钱
社会法律
AI计算机
建筑土木
金融管理
生活休闲
文档分类
知识教程
知识工坊
 上传文档  发布文章  登录账户
极点文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部小初高教育(3622)高中(2091)初中(938)小学(420)技能赚钱(254)教师资料(173)医药卫生(44)未知26(44)高等教育(29)毕业(18)

语言

全部中文(简体)(3373)

格式

全部DOC文档 DOC(3587)PDF文档 PDF(311)PPT文档 PPT(52)XLS文档 XLS(2)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 1000 个.
  • 全部
  • 小初高教育
  • 高中
  • 初中
  • 小学
  • 技能赚钱
  • 教师资料
  • 医药卫生
  • 未知26
  • 高等教育
  • 毕业
  • 全部
  • 中文(简体)
  • 全部
  • DOC文档 DOC
  • PDF文档 PDF
  • PPT文档 PPT
  • XLS文档 XLS
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • word文档 125读书《不一样的卡梅拉》口播推荐语自媒体-口播独白长文案

    125 读书《不一样的卡梅拉》口播推荐语 克利斯提昂·约里波瓦 豆瓣评分:9.3(531 人评价) 《不一样的卡梅拉》是一套非常适合父母与小朋友共读的书。 因为故事里的主人公是一家人,神奇的小鸡卡梅拉和她的丈夫、儿女! 他们一起经历了一系列难以想象的冒险故事: 与哥伦布一起发现美洲新大陆; 与伽利略一起研究星空; 在凡赛尔宫见到路易十四; 乘坐热气球回到鸡舍; 打败魔法生物鸡头蛇怪; 打败魔法生物鸡头蛇怪; …… 一边念着这些有趣、惊险又有知识性的故事,爸爸妈妈和孩子一起,仿佛 就化身成为了机智、勇敢、友善、真诚的卡梅拉一家。 然后孩子幼小的心灵里,就会留下这样一个深刻的印象—— 随时保持乐观的心态,并相信自己的家人,就一定能找到解决问题的方法!
    20 极点 | 1 页 | 10.83 KB | 4 月前
    3
  • word文档 模型12 脚拉脚模型(解析版)

    成立条件:等腰三角形顶角互补 模块一:认识“脚拉脚”模型 1、等腰直角三角形的逆序脚拉脚基本图 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED,点F 为E 的中点。 结论:BF=DF,BF DF ⊥ 法1:倍长中线+手拉手 延长DF 至点G,使得FG=FD,易证△DEF≌GF △ (SS); 所以G=ED=D,∠2= 7 ∠; 又∠1+ FBG ∠ ∠ ∠ , 又∠BFG+ 1+ FBG+ 5=180° ∠ ∠ ∠ (三角形内角和), 所以∠BFG+ 1+ FBG=90° ∠ ∠ ,所以BF DF ⊥ 。 2、等腰三角形的顺序脚拉脚模型 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED, 结论:E=√2 BD,∠BF=45° 法一:相似 BD △ ∽E △(SS) =90°+90°=180° 所以G 平行且等于DE,所以四边形DEG 为平行四边形, E D B F E D B 所以E=DG=√2BD,∠BF= BDG=45° ∠ 3、顶角互补型脚拉脚 已知:△B、△DE 为等腰三角形,α+β =180°,B=,D=DE,点F 为BE 的 中点 结论:①F DF ⊥ ;② DF AF =tan β 2 法1:倍长中线+手拉手
    20 极点 | 46 页 | 1.41 MB | 4 月前
    3
  • word文档 模型12 脚拉脚模型(解析版)(1)

    成立条件:等腰三角形顶角互补 模块一:认识“脚拉脚”模型 1、等腰直角三角形的逆序脚拉脚基本图 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED,点F 为E 的中点。 结论:BF=DF,BF DF ⊥ 法1:倍长中线+手拉手 延长DF 至点G,使得FG=FD,易证△DEF≌GF △ (SS); 所以G=ED=D,∠2= 7 ∠; 又∠1+ FBG ∠ ∠ ∠ , 又∠BFG+ 1+ FBG+ 5=180° ∠ ∠ ∠ (三角形内角和), 所以∠BFG+ 1+ FBG=90° ∠ ∠ ,所以BF DF ⊥ 。 2、等腰三角形的顺序脚拉脚模型 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED, 结论:E=√2 BD,∠BF=45° 法一:相似 BD △ ∽E △(SS) =90°+90°=180° 所以G 平行且等于DE,所以四边形DEG 为平行四边形, E D B F E D B 所以E=DG=√2BD,∠BF= BDG=45° ∠ 3、顶角互补型脚拉脚 已知:△B、△DE 为等腰三角形,α+β =180°,B=,D=DE,点F 为BE 的 中点 结论:①F DF ⊥ ;② DF AF =tan β 2 法1:倍长中线+手拉手
    20 极点 | 46 页 | 1.41 MB | 4 月前
    3
  • word文档 模型12 脚拉脚模型(原卷版)

    成立条件:等腰三角形顶角互补 模块一:认识“脚拉脚”模型 1、等腰直角三角形的逆序脚拉脚基本图 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED,点F 为E 的中点。 结论:BF=DF,BF DF ⊥ 法1:倍长中线+手拉手 延长DF 至点G,使得FG=FD,易证△DEF≌GF △ (SS); 所以G=ED=D,∠2= 7 ∠; 又∠1+ FBG ∠ ∠ ∠ , 又∠BFG+ 1+ FBG+ 5=180° ∠ ∠ ∠ (三角形内角和), 所以∠BFG+ 1+ FBG=90° ∠ ∠ ,所以BF DF ⊥ 。 2、等腰三角形的顺序脚拉脚模型 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED, 结论:E=√2 BD,∠BF=45° 法一:相似 BD △ ∽E △(SS) =90°+90°=180° 所以G 平行且等于DE,所以四边形DEG 为平行四边形, E D B F E D B 所以E=DG=√2BD,∠BF= BDG=45° ∠ 3、顶角互补型脚拉脚 已知:△B、△DE 为等腰三角形,α+β =180°,B=,D=DE,点F 为BE 的 中点 结论:①F DF ⊥ ;② DF AF =tan β 2 法1:倍长中线+手拉手
    20 极点 | 21 页 | 886.53 KB | 4 月前
    3
  • word文档 模型12 脚拉脚模型(原卷版)(1)

    成立条件:等腰三角形顶角互补 模块一:认识“脚拉脚”模型 1、等腰直角三角形的逆序脚拉脚基本图 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED,点F 为E 的中点。 结论:BF=DF,BF DF ⊥ 法1:倍长中线+手拉手 延长DF 至点G,使得FG=FD,易证△DEF≌GF △ (SS); 所以G=ED=D,∠2= 7 ∠; 又∠1+ FBG ∠ ∠ ∠ , 又∠BFG+ 1+ FBG+ 5=180° ∠ ∠ ∠ (三角形内角和), 所以∠BFG+ 1+ FBG=90° ∠ ∠ ,所以BF DF ⊥ 。 2、等腰三角形的顺序脚拉脚模型 已知:△B、△DE 为等腰直角三角形,∠B= D=90° ∠ ,B=B,D=ED, 结论:E=√2 BD,∠BF=45° 法一:相似 BD △ ∽E △(SS) =90°+90°=180° 所以G 平行且等于DE,所以四边形DEG 为平行四边形, E D B F E D B 所以E=DG=√2BD,∠BF= BDG=45° ∠ 3、顶角互补型脚拉脚 已知:△B、△DE 为等腰三角形,α+β =180°,B=,D=DE,点F 为BE 的 中点 结论:①F DF ⊥ ;② DF AF =tan β 2 法1:倍长中线+手拉手
    20 极点 | 21 页 | 886.53 KB | 4 月前
    3
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(解析版)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 中点,延长B 至D,使D=B,连接FD 交于 E,则四边形BEF 的面积为 . 解:∵DEF 是△B 的梅氏线, ∴由梅涅劳斯定理得, • • =1, 即 • • =1,则 = , 连F,S△BF= S△B,S△EF= S△B, 于是SBEF=S△BF+S△EF = S△B = × ×2×2s60° = × = . 故答为 . 变式训练 【变式1-1】.如图,D、E、F 的面积是△B 的面积的( ) . B. . D. 解:对△D 用梅涅劳斯定理可以得: • • =1,则 = . 设S△BF= ,S△BQ= S△BE= ,SBPRF= S△BD= , ∴S△PQR=S△BF﹣S△BQ﹣SBPRF= S△B. 故选:D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B
    20 极点 | 30 页 | 984.93 KB | 4 月前
    3
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(解析版)(1)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 中点,延长B 至D,使D=B,连接FD 交于 E,则四边形BEF 的面积为 . 解:∵DEF 是△B 的梅氏线, ∴由梅涅劳斯定理得, • • =1, 即 • • =1,则 = , 连F,S△BF= S△B,S△EF= S△B, 于是SBEF=S△BF+S△EF = S△B = × ×2×2s60° = × = . 故答为 . 变式训练 【变式1-1】.如图,D、E、F 的面积是△B 的面积的( ) . B. . D. 解:对△D 用梅涅劳斯定理可以得: • • =1,则 = . 设S△BF= ,S△BQ= S△BE= ,SBPRF= S△BD= , ∴S△PQR=S△BF﹣S△BQ﹣SBPRF= S△B. 故选:D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B
    20 极点 | 30 页 | 984.93 KB | 4 月前
    3
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(原卷版)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 声 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 【变式1-1】.如图,D、E、F 内分正△B 的三边B、B、均为1:2 两部分,D、BE、F 相 交成的△PQR 的面积是△B 的面积的( ) . B. . D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B 的三边B,B,或它们的延长线交于F、D、E 三点,那么 一定有 • • =1. 下面是利用相似三角形的有关知识证明该定理的部分过程:
    20 极点 | 12 页 | 558.94 KB | 4 月前
    3
  • word文档 素材01:「ChatGPT」+“毁掉大山男孩的张桂梅,真的太自私了!”

    素材 :「ChatGPT」+“毁掉大山男孩的张桂梅,真的太自私了!” 一事件解读 ChatGPT 是什么?它是美国人工智能研究实验室OpenAI 开发的一种全新聊天机器人模型,它能够通过 学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列任务。这款 AI 语言模型,让撰写邮件、论文、脚本,制定商业提案,创作诗歌、故事,甚至敲代码、检查程序错误都 变得易如反掌。和ChatGPT “毁掉大山男孩的张桂梅,真的太自私了!” 张桂梅的真面目,终于被曝光了! 很久不见张桂梅校长了。再一次出现,是她将152 个女孩送上考场。连续13 年送考,她还穿着那身黑 衬衣,但身姿已变得佝偻,步履也变得蹒跚。她反复叮嘱姑娘们:“跑起来,往前走,别回头!”7 日晚, 高三毕业生结束最后一次晚自习。看到路灯下苍老的张桂梅,情不自禁冲上来,紧紧抱住她。“张老师, 我爱你!”拿命教书的张桂梅,堪称时代 的世界,如果没有张桂梅, 很多女孩可能一辈子都无法走出大山。 “毁掉大山男孩的张桂梅,真的太自私了!” 鲁迅很早就说过:“要灭一个人,一是骂杀,二是捧杀。”这个时代热衷于造神,更喜欢毁神。一旦 达不到人们的预期或想象,人们就会疯狂地将神像砸碎。张桂梅,也是受害者之一。自从三年前,她的事 迹广为人知后,各路牛鬼蛇神都出动了。最恶心的,当属某清华大学网红毕业生。“张桂梅没生过小孩, 不知道
    20 极点 | 9 页 | 31.00 KB | 2 月前
    3
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(原卷版)(1)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 声 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 【变式1-1】.如图,D、E、F 内分正△B 的三边B、B、均为1:2 两部分,D、BE、F 相 交成的△PQR 的面积是△B 的面积的( ) . B. . D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B 的三边B,B,或它们的延长线交于F、D、E 三点,那么 一定有 • • =1. 下面是利用相似三角形的有关知识证明该定理的部分过程:
    20 极点 | 12 页 | 558.94 KB | 4 月前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
125读书一样梅拉口播推荐语自媒体独白文案模型12脚拉脚解析原卷38梅涅劳定理斯定理塞瓦素材01ChatGPT毁掉大山男孩张桂梅真的自私
极点文库
关于我们 文库协议 免责声明
本站文档数据由用户上传,仅供学习交流,如您发现相关资料侵犯您的合法权益,请联系我们进行删除。举报邮箱:admin@ailunwenpro.com
极点文库 ©2025 | 站点地图 豫ICP备2025115583号 豫公网安备41017202000115号
  • 我们的公众号同样精彩
    我们的公众号同样精彩