模型38 梅涅劳斯定理、塞瓦定理(解析版)梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B :D= = =12. ∴E=6. 故答是:6. 考点二:塞瓦定理 【例2】.如图:P,Q,R 分别是△B 的B,,B 边上的点.若P,BQ,R 相交于一点M, 求证: . 证明:如图,由三角形面积的性质,有 , , . 以上三式相乘,得 . 变式训练 【变式2-1】.请阅读下列材料,并完成相应任务 如图,塞瓦定理是指在△B 内任取一点,延长,B,分别交对边D,E,F 于,则 ∴ , 由塞瓦定理,得 , ∴ , ∴F=BF, ∴点F 为B 的中点; (2)解:∵△B 为等边三角形,B=12, ∴B==B=12, ∵E=4, ∴E=12 4 ﹣=8, ∵点D 是B 的中点, ∴BD=D=6, ∵B=12, ∴F=B﹣BF=12﹣BF, 由赛瓦定理,得 , ∴ , ∴BF=8. 【变式2-2】.请阅读下列材料,并完成相应任务 塞瓦定理 定理内容:如图1,塞瓦定理是指在△B20 极点 | 30 页 | 984.93 KB | 4 月前3
模型38 梅涅劳斯定理、塞瓦定理(解析版)(1)梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B :D= = =12. ∴E=6. 故答是:6. 考点二:塞瓦定理 【例2】.如图:P,Q,R 分别是△B 的B,,B 边上的点.若P,BQ,R 相交于一点M, 求证: . 证明:如图,由三角形面积的性质,有 , , . 以上三式相乘,得 . 变式训练 【变式2-1】.请阅读下列材料,并完成相应任务 如图,塞瓦定理是指在△B 内任取一点,延长,B,分别交对边D,E,F 于,则 ∴ , 由塞瓦定理,得 , ∴ , ∴F=BF, ∴点F 为B 的中点; (2)解:∵△B 为等边三角形,B=12, ∴B==B=12, ∵E=4, ∴E=12 4 ﹣=8, ∵点D 是B 的中点, ∴BD=D=6, ∵B=12, ∴F=B﹣BF=12﹣BF, 由赛瓦定理,得 , ∴ , ∴BF=8. 【变式2-2】.请阅读下列材料,并完成相应任务 塞瓦定理 定理内容:如图1,塞瓦定理是指在△B20 极点 | 30 页 | 984.93 KB | 4 月前3
模型38 梅涅劳斯定理、塞瓦定理(原卷版)梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 声 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 中,B==13,B=10,点D 为B 的中点,点F 在B 上,且BF= 2F,F 与D 交于点E,则E= . 考点二:塞瓦定理 【例2】.如图:P,Q,R 分别是△B 的B,,B 边上的点.若P,BQ,R 相交于一点M, 求证: . 变式训练 【变式2-1】.请阅读下列材料,并完成相应任务 如图,塞瓦定理是指在△B 内任取一点,延长,B,分别交对边D,E,F 于,则 × × =1. 任务:(1)当点D,E (2)若△B 为等边三角形,B=12,E=4,点D 是B 边的中点,求BF 的长. 【变式2-2】.请阅读下列材料,并完成相应任务 塞瓦定理 定理内容:如图1,塞瓦定理是指在△B 内任取一点,延长,B,分别交对边于D,E, F,则 . 数学意义:使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来 进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基20 极点 | 12 页 | 558.94 KB | 4 月前3
模型38 梅涅劳斯定理、塞瓦定理(原卷版)(1)梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 声 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 中,B==13,B=10,点D 为B 的中点,点F 在B 上,且BF= 2F,F 与D 交于点E,则E= . 考点二:塞瓦定理 【例2】.如图:P,Q,R 分别是△B 的B,,B 边上的点.若P,BQ,R 相交于一点M, 求证: . 变式训练 【变式2-1】.请阅读下列材料,并完成相应任务 如图,塞瓦定理是指在△B 内任取一点,延长,B,分别交对边D,E,F 于,则 × × =1. 任务:(1)当点D,E (2)若△B 为等边三角形,B=12,E=4,点D 是B 边的中点,求BF 的长. 【变式2-2】.请阅读下列材料,并完成相应任务 塞瓦定理 定理内容:如图1,塞瓦定理是指在△B 内任取一点,延长,B,分别交对边于D,E, F,则 . 数学意义:使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来 进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基20 极点 | 12 页 | 558.94 KB | 4 月前3
专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型(解析版)专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型 梅内劳斯(Meelus,公元98 年左右),是希腊数学家兼天文学家,梅涅劳斯定理是平面几何中的 一个重要定理。 梅涅劳斯(定理)模型:如图1,如果一条直线与 的三边B、B、或其延长线交于F、D、E 点,那 么 .这条直线叫 的梅氏线, 叫梅氏三角形. 梅涅劳斯定理的逆定理:如图1,若F、D、E 分别是 的三边B、B、或其延长线的三点,如果 图2 塞瓦(G·Gev1647-1734)是意大利数学家兼水利工程师.他在1678 年发表了一个著名的定理,后 世以他的名字来命名,叫做塞瓦定理。 塞瓦(定理)模型:塞瓦定理是指在△B 内任取一点G,延长G、BG、G 分别交对边于D、E、F, 如图2,则 。 注意:①梅涅劳斯(定理)与塞瓦(定理)区别是塞瓦定理的特征是三线共点,而梅涅劳斯定理的特征是 三点共线;②我们用梅涅劳斯(定理)与塞瓦(定理)解决的大部分问题,也添加辅助线后用平行线分线 段成比例和相似来解决。 例1(2023 浙江九年级期中)如图,在 中,D 为中线,过点任作一直线交B 于点F,交D 于点E, 求证: . 【解析】∵直线FEC 是 ABD △ 的梅氏线,∴ 1 AE DC BF ED BC FA . 而 1 2 DC BC ,∴ 1 120 极点 | 26 页 | 1.94 MB | 4 月前3
专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型(原卷版)专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型 梅内劳斯(Meelus,公元98 年左右),是希腊数学家兼天文学家,梅涅劳斯定理是平面几何中的 一个重要定理。 梅涅劳斯(定理)模型:如图1,如果一条直线与 的三边B、B、或其延长线交于F、D、E 点,那 么 .这条直线叫 的梅氏线, 叫梅氏三角形. 梅涅劳斯定理的逆定理:如图1,若F、D、E 分别是 的三边B、B、或其延长线的三点,如果 图2 塞瓦(G·Gev1647-1734)是意大利数学家兼水利工程师.他在1678 年发表了一个著名的定理,后 世以他的名字来命名,叫做塞瓦定理。 塞瓦(定理)模型:塞瓦定理是指在△B 内任取一点G,延长G、BG、G 分别交对边于D、E、F, 如图2,则 。 注意:①梅涅劳斯(定理)与塞瓦(定理)区别是塞瓦定理的特征是三线共点,而梅涅劳斯定理的特征是 三点共线;②我们用梅涅劳斯(定理)与塞瓦(定理)解决的大部分问题,也添加辅助线后用平行线分线 段成比例和相似来解决。 例1(2023 浙江九年级期中)如图,在 中,D 为中线,过点任作一直线交B 于点F,交D 于点E, 求证: . 例2(2023 重庆九年级月考)如图,在 中, , .M 为B 边上的中线, 于点D,D 的延长线交B 于点E.求 . 例3(2023 湖北九年级期中)如图,点D、E20 极点 | 12 页 | 1.29 MB | 4 月前3
62读书《猎巫:塞勒姆1692》推荐语自媒体-口播独白长文案62 读书《猎巫:塞勒姆1692》推荐语 斯泰西·希夫 普利策得主屠榜口碑之作,美国版《叫魂》,一段为自保而陷 害彼此的失智时期,一场全民参与的歇斯底里,所有美国人的 噩梦。 “如果你想煽动情绪,就提起塞勒姆。”1692 年,在波士顿附近 的小镇塞勒姆,近二百人被指控为巫师,二十余人惨死,审判 历时九个月,随后却是长达一个世纪的沉默。如今,“猎巫” 一词已经成为刺激美国民众神经的文化符号,每当正义缺席时, 一词已经成为刺激美国民众神经的文化符号,每当正义缺席时, 塞勒姆便宛如幽灵般闪现。20 极点 | 1 页 | 353.06 KB | 4 月前3
36_瓦伦达效应成功必须专注过程,而非结果dou出新知心理学自媒体-口播独白长文案心理学上有一个著名的瓦伦达效应,瓦伦达是美国一个著名的高空走钢丝表演者,在一次 重大的表演中不幸失足身亡。他的妻子事后说,我就知道这一次一定要出事,因为他上场 前总是不停的说这次太重要了,不能失败,绝不能失败。而以前每次成功的表演,他只想 着走钢丝这件事本身,而不去管这件事可能带来的一切。后来心理学家把这种为了达到一 种目的而过于注重事情结果,总是患得患失的心态,称为瓦伦达心态。美国斯坦福大学的 那样刺激人的神经系统。 比如当一个高尔夫球手击球前一再告诉自己,不要把球打进水里时,他的大脑往往就会出 现球掉进水里的情景,而结果往往事与愿违,这时间球大多都会掉进水里。这项研究也从 侧面证实了瓦伦达心态,事物的法则就是这样,如果太注重成功或失败,结果往往会失败。 只要你注重事物本身的特点及规律,转心致志地做好它,你就会收到意想不到的效果。所 以我们常说心态最重要,20 极点 | 1 页 | 7.58 KB | 4 月前3
19读书《卡塞尔不欢迎逻辑》推荐语 带图书封面自媒体-口播独白长文案读书《卡塞尔不欢迎逻辑》推荐语 恩里克·比拉-马塔斯 诺贝尔文学奖热门人选,西班牙文坛“冷面笑将”,一段有关 “崩溃与恢复”的先锋艺术之旅。 在这通奇特来电中,一个女性嗓音邀请作家前往德国城市卡塞 尔参加世界先锋艺术盛会:卡塞尔文献展。作家需化身“驻店 作家”待在卡塞尔城郊一家中餐馆内,每日与人聊天交流,并 在众人眼皮底下写作。随着时间的流逝,卡塞尔在作家心中越 来越像一座奇景遍地的庄园,而他自己则犹如一个无所事事的20 极点 | 1 页 | 229.74 KB | 4 月前3
顺德区卓越高中2022学年第一学期高二年级期中联考地理试题18.阅读图文材料,完成下列问题。 (28 分) 贝塞卡湖是位于东非大裂谷带上的构造湖,水位季节变化大,与阿瓦什河有低矮的分水岭相隔。1960 年,阿瓦什河上游修筑水库(位于图中河流南端上游42 千米处)调节下游的径流量;1964 年,区域内开辟 了三处甘蔗种植园,并在阿瓦什河上建泵站抽水漫灌。1976 年以来,当地气候未发生显著变化,但贝塞卡 湖年均水位持续上升。为减轻贝塞卡湖水位上升对人类活动的不利影响,2000 0 年后在湖区东北部修建了多 座泵站,抽水排入阿瓦什河。图10 示意贝塞卡湖流域的水系和种植园分布。 图10 (1) 描述贝塞卡湖流域的水系特征。 (8 分) (2) 分析贝塞卡湖水位持续快速上升的原因。 (6 分) (3) 简述贝塞卡湖水位季节变化大对人类活动的不利影响。 (8 分) (4) 分析贝塞卡湖排水泵站选址湖区东北部的优点。 (6 分)20 极点 | 7 页 | 1.23 MB | 4 月前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100

