积分充值
 首页
办公文档
PPT模板
小初高教育
小学初中高中教师资料
高等教育
考研考证大学生毕业
医药卫生
技能赚钱
社会法律
AI计算机
建筑土木
金融管理
生活休闲
文档分类
知识教程
知识工坊
 上传文档  发布文章  登录账户
极点文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部小初高教育(3505)高中(2694)初中(521)教师资料(208)技能赚钱(182)小学(82)医药卫生(34)未知26(34)高等教育(19)毕业(18)

语言

全部中文(简体)(3376)

格式

全部DOC文档 DOC(3357)PDF文档 PDF(351)PPT文档 PPT(32)XLS文档 XLS(2)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 1000 个.
  • 全部
  • 小初高教育
  • 高中
  • 初中
  • 教师资料
  • 技能赚钱
  • 小学
  • 医药卫生
  • 未知26
  • 高等教育
  • 毕业
  • 全部
  • 中文(简体)
  • 全部
  • DOC文档 DOC
  • PDF文档 PDF
  • PPT文档 PPT
  • XLS文档 XLS
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(解析版)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 中点,延长B 至D,使D=B,连接FD 交于 E,则四边形BEF 的面积为 . 解:∵DEF 是△B 的梅氏线, ∴由梅涅劳斯定理得, • • =1, 即 • • =1,则 = , 连F,S△BF= S△B,S△EF= S△B, 于是SBEF=S△BF+S△EF = S△B = × ×2×2s60° = × = . 故答为 . 变式训练 【变式1-1】.如图,D、E、F 的面积的( ) . B. . D. 解:对△D 用梅涅劳斯定理可以得: • • =1,则 = . 设S△BF= ,S△BQ= S△BE= ,SBPRF= S△BD= , ∴S△PQR=S△BF﹣S△BQ﹣SBPRF= S△B. 故选:D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B 的
    20 极点 | 30 页 | 984.93 KB | 4 月前
    3
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(解析版)(1)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 中点,延长B 至D,使D=B,连接FD 交于 E,则四边形BEF 的面积为 . 解:∵DEF 是△B 的梅氏线, ∴由梅涅劳斯定理得, • • =1, 即 • • =1,则 = , 连F,S△BF= S△B,S△EF= S△B, 于是SBEF=S△BF+S△EF = S△B = × ×2×2s60° = × = . 故答为 . 变式训练 【变式1-1】.如图,D、E、F 的面积的( ) . B. . D. 解:对△D 用梅涅劳斯定理可以得: • • =1,则 = . 设S△BF= ,S△BQ= S△BE= ,SBPRF= S△BD= , ∴S△PQR=S△BF﹣S△BQ﹣SBPRF= S△B. 故选:D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B 的
    20 极点 | 30 页 | 984.93 KB | 4 月前
    3
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(原卷版)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 声 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 【变式1-1】.如图,D、E、F 内分正△B 的三边B、B、均为1:2 两部分,D、BE、F 相 交成的△PQR 的面积是△B 的面积的( ) . B. . D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B 的三边B,B,或它们的延长线交于F、D、E 三点,那么 一定有 • • =1. 下面是利用相似三角形的有关知识证明该定理的部分过程:
    20 极点 | 12 页 | 558.94 KB | 4 月前
    3
  • word文档 模型38 梅涅劳斯定理、塞瓦定理(原卷版)(1)

    梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三 条线段之积.当直线交三角形B 三边所在直线B、B、于D、E、F 点时,则有E×BD×F= EB×D×F 塞瓦定理:塞瓦定理是指在△B 内任取一点,延长、B、分别交对边于D、E、F,则 BD×E×F=D×E×FB. 声 考点一:梅涅劳斯定理 例题精讲 【例1】.如图,等边△B 的边长为2,F 为B 中点,延长B 【变式1-1】.如图,D、E、F 内分正△B 的三边B、B、均为1:2 两部分,D、BE、F 相 交成的△PQR 的面积是△B 的面积的( ) . B. . D. 【变式1-2】.梅涅劳斯定理 梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如 图(1),如果一条直线与△B 的三边B,B,或它们的延长线交于F、D、E 三点,那么 一定有 • • =1. 下面是利用相似三角形的有关知识证明该定理的部分过程:
    20 极点 | 12 页 | 558.94 KB | 4 月前
    3
  • word文档 专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型(解析版)

    专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型 梅内劳斯(Meelus,公元98 年左右),是希腊数学家兼天文学家,梅涅劳斯定理是平面几何中的 一个重要定理。 梅涅劳斯(定理)模型:如图1,如果一条直线与 的三边B、B、或其延长线交于F、D、E 点,那 么 .这条直线叫 的梅氏线, 叫梅氏三角形. 梅涅劳斯定理的逆定理:如图1,若F、D、E 分别是 的三边B、B、或其延长线的三点,如果 世以他的名字来命名,叫做塞瓦定理。 塞瓦(定理)模型:塞瓦定理是指在△B 内任取一点G,延长G、BG、G 分别交对边于D、E、F, 如图2,则 。 注意:①梅涅劳斯(定理)与塞瓦(定理)区别是塞瓦定理的特征是三线共点,而梅涅劳斯定理的特征是 三点共线;②我们用梅涅劳斯(定理)与塞瓦(定理)解决的大部分问题,也添加辅助线后用平行线分线 段成比例和相似来解决。 例1(2023 浙江九年级期中)如图,在 中,D 为中线,过点任作一直线交B 于点E.求 . 【解析】∵F 是 的梅氏线,由题设,在 中, , , 由射影定理 2 2 4 AD AD AM AC DM DM AM CM      .对 和截线ED,由梅涅劳斯定理, 1 AE BC MD EB CM DA   ,即 2 1 1 1 4 AE EB .∴ 2 AE EB . 【点睛】这道题也是梅氏定理的直接应用,但是对于梅氏定理的应用的难点,在于找梅氏线.
    20 极点 | 26 页 | 1.94 MB | 4 月前
    3
  • word文档 专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型(原卷版)

    专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型 梅内劳斯(Meelus,公元98 年左右),是希腊数学家兼天文学家,梅涅劳斯定理是平面几何中的 一个重要定理。 梅涅劳斯(定理)模型:如图1,如果一条直线与 的三边B、B、或其延长线交于F、D、E 点,那 么 .这条直线叫 的梅氏线, 叫梅氏三角形. 梅涅劳斯定理的逆定理:如图1,若F、D、E 分别是 的三边B、B、或其延长线的三点,如果 世以他的名字来命名,叫做塞瓦定理。 塞瓦(定理)模型:塞瓦定理是指在△B 内任取一点G,延长G、BG、G 分别交对边于D、E、F, 如图2,则 。 注意:①梅涅劳斯(定理)与塞瓦(定理)区别是塞瓦定理的特征是三线共点,而梅涅劳斯定理的特征是 三点共线;②我们用梅涅劳斯(定理)与塞瓦(定理)解决的大部分问题,也添加辅助线后用平行线分线 段成比例和相似来解决。 例1(2023 浙江九年级期中)如图,在 中,D 为中线,过点任作一直线交B 的外角平分线与边B 的延长线交于点P, 的平分线与边交于点Q, 的平分线与边B 交于点R,求证:P、Q、R 三点共线. 例6.(2023 上·广东深圳·九年级校联考期中)梅涅劳斯(Meelus)是古希腊数学家,他首先证明了梅涅劳 斯定理,定理的内容是:如图1,如果一条直线与 的三边 或它们的延长线交于 三点,那么一定有 . 下面是利用相似三角形的有关知识证明该定理的部分过程: 证明:如图2,过点
    20 极点 | 12 页 | 1.29 MB | 4 月前
    3
  • word文档 中考英语1600词汇背诵表 艾宾浩斯记忆表(带音标语音领读)

    20 极点 | 53 页 | 639.00 KB | 4 月前
    3
  • word文档 142读书《斯波克育儿经》口播推荐语自媒体-口播独白长文案

    142 读书《斯波克育儿经》口播推荐语 本杰明·斯波克 豆瓣评分:8.2 (487 人评价) 这本书是全球销量最大、被公认为最可信赖的育儿书。每个家长,都应该 像准备感冒药一样,放一本《斯波克育儿经》在家里。 无论你是即将成为家长,或者已经有了孩子,你最关心的问题这本书里都 有。 从如何选购婴儿车、怎样给孩子准备合理的食物这些生活细节的小问题, 到父母如何向孩子解释二胎、如何让孩子拥有安全感这些心理成长的大问
    20 极点 | 1 页 | 10.75 KB | 4 月前
    3
  • word文档 47读书《本质:贝佐斯的商业逻辑与领导力法则》推荐语自媒体-口播独白长文案

    47 读书《本质:贝佐斯的商业逻辑与领导力法则》推荐语 海伦娜·亨特 成功没有神奇妙方,关键是要抢到别人前面!从11 个角度,全面剖 析贝佐斯是如何缔造亚马逊商业帝国?又是如何问鼎世界首富的? 收录了贝佐斯关于商业法则、企业家精神、客户服务、企业文化, 以及很多人都关心的太空与“蓝色起源”等方面的400 余条经典语 录,为我们了解这位世界卓越的企业家的思想提供了独特的视角。 从招牌广 从招牌广告、个性化服务、帮产品找客户、创建有竞争力的品牌、 精益文化,等等,亚马逊在发展过程中迈出的每一步,都彰显了贝 佐斯的创新领导智慧。
    20 极点 | 1 页 | 471.67 KB | 4 月前
    3
  • word文档 2025年鄂尔多斯市人教版小学三年级英语下学期期末考试卷及答案

    2025 年鄂尔多斯市人教版小学三年级英语下学期期末考试卷及答案 一、单项选择题(共10 题,每题2 分) 1. — Good morning! — __________ A. Good morning! B. Good afternoon! C. Good night! 2. This is my __________. He is tall. A. mother
    20 极点 | 5 页 | 24.45 KB | 2 月前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
模型38梅涅劳定理斯定理塞瓦解析原卷专题21相似之梅劳斯中考英语1600词汇背诵艾宾浩斯记忆音标语音领读142读书斯波克育儿口播推荐语自媒体独白文案47本质贝佐斯商业逻辑领导领导力法则2025尔多多斯鄂尔多鄂尔多斯市人教版小学三年年级三年级下学学期下学期期末考试期末考期末考试卷及答案
极点文库
关于我们 文库协议 免责声明
本站文档数据由用户上传,仅供学习交流,如您发现相关资料侵犯您的合法权益,请联系我们进行删除。举报邮箱:admin@ailunwenpro.com
极点文库 ©2025 | 站点地图 豫ICP备2025115583号 豫公网安备41017202000115号
  • 我们的公众号同样精彩
    我们的公众号同样精彩