黑龙江省大庆铁人中学2022-2023学年高二上学期第一次月考数学答案
701.32 KB
2 页
0 下载
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .pdf | 3 |
| 概览 | ||
大庆铁人中学2021 级高二学年上学期月考 数学 答案 考试时间: 2022 年 10 月 日 第 1 页 共 2 页 大庆铁人中学2021 级高二学年上学期月考 数学答案 一、选择题答案 1 2 3 4 5 6 B B D C D B 7 8 9 10 11 12 A B ACD ABC ABC ABC 二、填空题答案 13. 21 14. 2 15. 1 y = 或 2 0 x y + = 16. 1 1 [ , ] 12 6 三、解答题题答案 17.解:(1)设l2 的方程为2 0 x y m − + = ,因为l2 在x 轴上的截距为3 2 , 所以3 0 0, 3, m m −+ = = − 即2 : 2 3 0. l x y − − = 由 2 4 0 2 3 0 x y x y + − = − − = 得 2 1 x y = = 所以直线l1 与l2 的交点坐标为(2,1). (2)当l3 过原点时,l3 的方程为 1 2 y x = ,即 2 0 x y − = . 当l3 不过原点时,设l3 的方程为 1( 0) 2 x y a a a + = , 又直线l3 经过l1 与l2 的交点,所以2 1 1 2 a a + = ,得 5 2 a = , 所以l3 的方程为2 5 0 x y + −= . 综上,l3 的方程为 2 0 x y − = 或 5 0. x y + −= 18.解:(1)∵AB → =(-2,-1,3), AC → =(1,-3,2), ∴ 14, 14 AB AC → → = = ,cos∠BAC= AB AC AB AC → → → → • = 1 2 ,∴∠BAC=60° , ∴所求平行四边形的面积 0 1 2 14 14 sin60 7 3 2 S = = . (2)设 ( , , ) a x y z → = ),∵a → ⊥AB → , a → ⊥AC → ,且| a → |= 3 , ∴ 2 2 2 2 3 0 3 2 0 3 x y z x y z x y z − − + = − + = + + = 解得 1 1 1 x y z = = = 或 1 1 1 x y z = − = − = − ∴a → = (1,1,1) 或a → = ( 1, 1, 1) −−− 19.解18.解:(1)依题意,DA,DC,DP 两两互相垂直,如图,以D 为原点,建立空间直角坐标系.设 PD=h(h>0), 由题意得E(1,0,0),B(2,2,0),P(0,0,h),所以PE =(1,0,-h), EB → =(1,2,0). 设平面PEB 的法向量为n=(x0,y0,z0),则 0 0 n PE n EB → → → → • = • = 即 0 0 0 0 0 2 0 x z h x y − = + = 令 0 2 x h = ,则 0 y h = −, 0 2 z = ,得 (2 , ,2) n h h → = − 因为PD⊥平面ABCD,所以平面ABCD 的一个法向量为m=(0,0,1), 依题意,有|cos<m,n>|= 2 2 6 6 5 4 m n h m n →→ → →= = + ,可得h=2,所以PD=2. (2)由(1)得,平面PEB 的一个法向量为 ( ) 2, 1,1 n = − . 又C(0,2,0),所以 ( 2,0,0) BC → = − ,所以点C 到平面PEB 的距离为 2 6 3 BC n n → → → • = 大庆铁人中学2021 级高二学年上学期月考 数学 答案 考试时间: 2022 年 10 月 日 第 2 页 共 2 页 20.解:(1)由题知AC AB AD AA → → → → = + + ,则 2 2 2 2 2( ) AC AB AD AA AB AD AB AA AD AA → → → → → → → → → → = + + + • + + =85 85 AC AC → = = (2) 1 1 1 1 1 1 1 ( ) ( ) 3 2 3 2 3 6 6 EF EC CF AC BC AB AD AA AD AA AB AD AA → → → → → → → → → → → → → = + = − = + + − + = − − 1 1 , 3 6 x y z = = = − 20. 解:(1)由题知OD为CD在平面ABD上的射影,CO⊥平面ABD,∴CO⊥BD,∵BD⊥CD,OC∩CD=C, ∴BD⊥平面OCD,∴BD⊥OD,∴AB∥OD,∠ODC 是二面角C-BD-A 的平面角,∴∠ODC=α,则 OC=CDsin α,OD=CDcos α. ∴V 三棱锥C-AOD= 1 3 S△AOD·OC= 1 1 3 2 ·OD·BD·OC= 2 6 ·OD·OC= 2 6 ·CD· sin α·CD· cos α= 2 3 sin 2α≤ 2 3 ,当且仅当 2 1 sin = ,即 45 = 时取等号.故当 45 = 时,三棱锥C AOD − 的 体积最大,最大为 2 3 . (2)过O 作OE⊥AB 于E,则OEBD 为矩形,以O 为原点, , , , OE OD OC → → → 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系,则 O(0,0,0),D(0,2cos α,0), ( 2,2cos 2,0), ( 2,2cos ,0), (0,0,2sin ), A B C − ( 2,2,0), ( 2, 2cos ,2sin ), AD BC → → = − = − − , 由 AD ⊥BC, 得 0 AD BC → → • = , ∴ ( 2)( 2) 2( 2cos ) 0 0 − − + − + = ,可得 1 cos , 2 3 = = 22. (1)取BC 的中点M,连接 1 A M 1 1 2 AB AC = = , 2 BC = , M 是BC 的中点, 又 1 1 A M A BC 面 , 平面ABC ⊥平面 1 A BC
| ||
下载文档到本地,方便使用
- 可预览页数已用完,剩余
1 页请下载阅读 -
文档评分


黑龙江省大庆铁人中学2022-2023学年高二上学期第一次月考生物答案