模型20 轴对称——婆罗摩笈多模型-解析版轴对称 模型(二十)——婆罗摩笈多模型 一、垂直 中点 【结论1】如图,△B 和△DBE 是等腰直角三角形,M 经过点B, 若M⊥E,则①点是D 的中点,②SΔCBE=SΔ ABD,③E=2B 【证明】如图,(知垂直得中点,一线三垂直) 过作P⊥M,垂足为P,过D 作DQ⊥M 交M 的延长线于Q, 易证:△BP △BM,P ≌ =BM +∠3=90° ∠DQP ∴ =90° ②如图,由①知SΔCBE=SΔCBP+SΔ EBP=SΔ EMP+SΔ EBP=SΔ MEB=SΔ ABD,得证 ③如图,由①知D=MB=2BP,得证。 婆罗摩笈多定理: 若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边。这个定理有 另一个名称,叫做“布拉美古塔定理 ” (又译《卜拉美古塔定理”)。20 极点 | 20 页 | 1.53 MB | 4 月前3
模型20 轴对称——婆罗摩笈多模型-原卷版轴对称 模型(二十)——婆罗摩笈多模型 一、垂直 中点 【结论1】如图,△B 和△DBE 是等腰直角三角形,M 经过点B, 若M⊥E,则①点是D 的中点,②SΔCBE=SΔ ABD,③E=2B 【证明】如图,(知垂直得中点,一线三垂直) 过作P⊥M,垂足为P,过D 作DQ⊥M 交M 的延长线于Q, 易证:△BP △BM,P ≌ =BM +∠3=90° ∠DQP ∴ =90° ②如图,由①知SΔCBE=SΔCBP+SΔ EBP=SΔ EMP+SΔ EBP=SΔ MEB=SΔ ABD,得证 ③如图,由①知D=MB=2BP,得证。 婆罗摩笈多定理: 若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边。这个 定理有另一个名称,叫做“布拉美古塔定理 ” (又译“卜拉美古塔定理”)。20 极点 | 9 页 | 908.15 KB | 4 月前3
罗生门(电影分镜头剧本)最新自媒体短视频段子学院派微电影剧本罗生门(电影分镜头剧本) 罗 生 门 (电影分镜头剧本) 黑 泽 明 第一场 罗生门 1★罗生门(大远景) 倾盆大雨、烟雾迷蒙中的罗生门。 2★罗生门(远景) 呈半倾圮状的硕大无比的罗生门。 3★隐约看得见罗生门下两个避雨的人影(远景) 前景是倒在地上的大圆柱。四根罗生门圆柱中间, 有两个人坐在石板台基上。这两个人,一个是行脚僧, 从正面拍摄坐着的两个人。水珠一滴一滴地从僧衣 袖角滴到台基上。 第二场 路面 1★路面(特写)→罗生门(大远景) 画面左前方出现跑过来的两只脚。一双穿着草鞋的 湿脚,噼哧啪喳地踏着雨雾茫茫的积水坑洼,溅起泥浆, 奔罗生门跑来。 第三场 罗生门 1★跑来的打杂的(俯拍·远景) 前景是倒在地上的大圆柱,打杂的从后景朝罗生门 跑来。 2★打杂的脚(仰拍·特写) 打杂的跑上台阶从右边走出画面。 行脚僧:“在纠察使属的堂下。” 打杂的:“纠察使属?” 行脚僧:“案子是有一个人遭了杀害。” 打杂的:“哎,杀死个把人,又算得什么呀?” 打杂的站起来。 8★打杂的(特写) 打杂的:“……你上这罗生门的门楼去看看!不管 别的,没主的尸首总有个五条六条躺着哩。” 说着,往下脱着衣服。 9★行脚僧(特写) 行脚僧:“那倒是。什么兵荒咧,地震咧,风暴咧, 火灾咧,荒年咧,疫病咧,……连年灾难不断。”20 极点 | 39 页 | 40.84 KB | 4 月前3
专题34 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型(解析版)专题34 圆中的重要模型之阿基米德折弦(定理)模型、 婆罗摩笈多(定理)模型 圆在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就圆形中的重要模 型(阿基米德折弦(定理)模型、婆罗摩笈多(布拉美古塔)(定理)模型)进行梳理及对应试题分析, 方便掌握。 模型1 阿基米德折弦模型 【模型解读】折弦:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦。 中, , 在 中, ,由(1)可知, , ∴ ; 【点睛】本题主要考查了全等三角形的判定与性质,正确作出辅助线是解题的关键. 模型2 婆罗摩笈多(定理)模型 【模型解读】婆罗摩笈多(Brmgupt)是七世纪时的印度数学家。 婆罗摩笈多定理:如果一个圆内接四边形的对角线互相垂直相交,那么从交点向某一边所引垂线的反向延 长线必经过这条边对边的中点。 图1 △=S BE △;(2)若F 为 D 中点,则G⊥BE。 例1.(2023·浙江·九年级专题练习)阅读下列相关材料,并完成相应的任务. 布拉美古塔定理 婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈 多定理”,也称“布拉美古塔定理”.定理的内容是:若圆内接四边形的对角线互相垂直,则垂直于一边 且过对角线交点的直线平分对边. 某数学兴趣小组的同学写出了这个定理的已知和求证.20 极点 | 49 页 | 4.02 MB | 4 月前3
专题34 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型(原卷版)专题34 圆中的重要模型之阿基米德折弦(定理)模型、 婆罗摩笈多(定理)模型 圆在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就圆形中的重要模 型(阿基米德折弦(定理)模型、婆罗摩笈多(布拉美古塔)(定理)模型)进行梳理及对应试题分析, 方便掌握。 模型1 阿基米德折弦模型 【模型解读】折弦:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦。 小丽认为可以利用“垂线法”,如图3:过点M 作 于点,连接 任务:(1)请你从小明和小丽的方法中任选一种证明思路,继续书写出证明过程, (2)就图3 证明: . 模型2 婆罗摩笈多(定理)模型 【模型解读】婆罗摩笈多(Brmgupt)是七世纪时的印度数学家。 婆罗摩笈多定理:如果一个圆内接四边形的对角线互相垂直相交,那么从交点向某一边所引垂线的反向延 长线必经过这条边对边的中点。 图1 △=S BE △;(2)若F 为 D 中点,则G⊥BE。 例1.(2023·浙江·九年级专题练习)阅读下列相关材料,并完成相应的任务. 布拉美古塔定理 婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈 多定理”,也称“布拉美古塔定理”.定理的内容是:若圆内接四边形的对角线互相垂直,则垂直于一边 且过对角线交点的直线平分对边. 某数学兴趣小组的同学写出了这个定理的已知和求证.20 极点 | 25 页 | 2.38 MB | 4 月前3
101条老子经典言论名人语录老孔孟庄韩文案20 极点 | 12 页 | 15.45 KB | 4 月前3
118条孔子经典言论名人语录老孔孟庄韩文案20 极点 | 17 页 | 17.45 KB | 4 月前3
53条庄子经典言论名人语录老孔孟庄韩文案20 极点 | 6 页 | 13.00 KB | 4 月前3
62条孟子经典言论名人语录老孔孟庄韩文案20 极点 | 6 页 | 12.17 KB | 4 月前3
专题16 全等三角形模型之婆罗摩笈多模型解读与提分精练(全国通用)(解析版)专题16 全等三角形模型之婆罗摩笈多模型 婆罗摩笈多(Brmgupt)是七世纪时的印度数学家,在世时间约是公元 598 年 ~ 660 年。他编著了 《婆罗摩修正体系》《肯达克迪迦》。《婆罗摩修正体系》中有关数学的部分涉及到有关三角形、四 边形、零、负数、一阶和二阶方程的研究,《肯达克迪迦》则是天文方面的著作,研究了关于月食、 日食、行星的合等问题。他提出的一些概念在世界数学史上也有很高的地位,比如负数。以他命名的 地位,比如负数。以他命名的 婆罗摩笈多定理又称“布拉美古塔”定理。本专题我们讲的就是由婆罗摩笈多定理演化而来的“婆罗摩笈 多”模型。 .................................................................................................................................. ...............2 模型1“婆罗摩笈多”模型..............................................................................................................................2 .........................................20 极点 | 50 页 | 4.08 MB | 4 月前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100

